The Decay $B \rightarrow K \ell^{+} \ell^{-}$and Model-Independent Analysis

Christian Wacker

TU Dortmund
Theoretische Physik III
based on
C. Bobeth, G. Hiller, D. van Dyk, CW (arXiv:1111.2558)
5th Annual Workshop of the Helmholtz Alliance "Physics at the Terascale"
Bonn, 08. December 2011

Introduction to $B^{-} \rightarrow K^{-} \ell^{+} \ell^{-}$decays
Searching for New Physics (NP)

- Standard Model (SM) very successful but incomplete
- extensions to SM predict additional particle content (e.g. SUSY)
- indirect search: NP contribution to loop processes \Rightarrow need precise measurements and calculations

Parton Level

- $b \rightarrow s \ell^{+} \ell^{-}$, mediated by Flavor Changing Neutral Currents (FCNCs)
- FCNCs forbidden at tree level in SM, but not through loops \Rightarrow rare process

Introduction to $B^{-} \rightarrow \mathrm{K}^{-} \ell^{+} \ell^{-}$decays

- differential branching fraction \mathcal{B}
- $\sqrt{q^{2}}=$ dilepton invariant mass
- SM prediction with form factors from Khodjamirian et al. (2010)
- experimental data from BaBar (2006) hep-ex/0604007, Belle arXiv:0904.0770 (2009) and CDF (2011) arxiv:1107.3753, total number events <400

large recoil $q^{2} \ll m_{b}^{2}$
Bobeth, Hiller, Piranishvili (2007) arXiv:0709.4174
low recoil $q^{2} \approx m_{b}^{2}$
Bobeth, Hiller, van Dyk, CW (2011) arXiv:1111.2558

Operator Product Expansion (OPE)

- two energy scales involved
- weak scale $\mathcal{O}\left(m_{W}\right)$
- hadronic scale $\mathcal{O}\left(m_{b}\right)$
- systematic and model-independent treatment with an OPE
- effective Hamiltonian for $b \rightarrow s \ell^{+} \ell^{-}$

$$
\mathcal{H}_{\text {eff }}=-\frac{4 G_{\mathrm{F}}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i=1}^{10} \mathcal{C}_{i}(\mu) \mathscr{O}_{i}(\mu)+\mathcal{O}\left(V_{u b} V_{u s}^{*}\right)
$$

- Fermi-constant G_{F} from weak interactions
- CKM elements $V_{t b} V_{t s}^{*}$ - top, charm dominant - up Cabibbo suppressed
- Wilson coefficients $\mathcal{C}_{i}(\mu)$
- local operators $\mathscr{O}_{i}(\mu)$
- renormalization scale μ
- separation into long-distance \mathscr{O}_{i} and short-distance \mathcal{C}_{i} physics

Operator Product Expansion

- most relevant operators for $B \rightarrow K \ell^{+} \ell^{-}$

$$
\mathscr{O}_{7} \propto\left[\bar{s} \sigma^{\mu \nu} P_{R} b\right] F_{\mu \nu} \quad \mathscr{O}_{9(10)} \propto\left[\bar{s} \gamma^{\mu} P_{L} b\right]\left[\bar{\ell} \gamma_{\mu}\left(\gamma_{5}\right) \ell\right]
$$

New Physics

- modifies Wilson coefficients (e.g. new heavy particles):

$$
\mathcal{C}_{i}=\mathcal{C}_{i}^{\mathrm{SM}}+\mathcal{C}_{i}^{\mathrm{NP}}
$$

- induces new operators (helicity-flipped, scalar, tensor, ...)
- not investigated here

CP Violation (CPV)

- SM: CPV from complex-phase of CKM matrix
- $\mathrm{SM}: \mathcal{C}_{i}$ real-valued in this basis
- complex-valued $\mathcal{C}_{i} \Rightarrow$ new source of CPV

Hadronic Matrix Elements and Form Factors

Three Form Factors

- $\langle K| \bar{s} \gamma^{\mu} b|B\rangle \sim f_{+}, f_{0}$
- $\langle K| \bar{s} \sigma^{\mu \nu} b|B\rangle \sim f_{T}$
- biggest source of uncertainties

Improved Isgur-Wise Relation

Khodjamirian et al.

- express QCD matrix elements through an OPE in $1 / m_{b}$ using HQET fields
- relate HQET currents to quark currents

$$
\begin{aligned}
f_{T}\left(q^{2}\right) & =\frac{\left(m_{B}+m_{K}\right) m_{B}}{q^{2}} \kappa f_{+}\left(q^{2}\right)+\mathcal{O}\left(\alpha_{s}, \frac{\Lambda}{m_{b}}\right) \\
\kappa & =1+\mathcal{O}\left(\alpha_{s}^{2}\right) \text { for } \mu=m_{b}
\end{aligned}
$$

- reduction of independent form factors: $3 \rightarrow 2$

Low Recoil Framework by Grinstein, Pirjol (2004) hep.ph/0404250

- improved Isgur-Wise relation
- OPE in $1 / Q$ with $Q \in\left\{m_{B}, \sqrt{q^{2}}\right\}$
- $\left\langle\mathscr{O}_{1 \ldots 6,8}\right\rangle$ can be expressed through $\left\langle\mathscr{O}_{7,9,10}\right\rangle$
- effective coefficients

$$
\begin{aligned}
& \mathcal{C}_{7}^{\text {eff }}=\mathcal{C}_{7}+\mathcal{O}\left(\mathcal{C}_{3} \ldots 6, \alpha_{s} \mathcal{C}_{1,2,8}, \frac{m_{c}^{2}}{q^{2}}\right) \\
& \mathcal{C}_{9}^{\text {eff }}=\mathcal{C}_{9}+\left(\frac{4}{3} \mathcal{C}_{1}+\mathcal{C}_{2}\right) h\left(q^{2}\right)+\mathcal{O}\left(\mathcal{C}_{3 \ldots 6}, \alpha_{s} \mathcal{C}_{1,2,8}, \frac{m_{c}^{2}}{q^{2}}\right)
\end{aligned}
$$

- better control of non-perturbative matrix elements of operators $(\bar{s} \Gamma b)\left(\bar{q} \Gamma^{\prime} q\right)$

Universal Short Distance Couplings at Low Recoil

 for negligible lepton masses, $\ell \in\{e, \mu\}$- amplitude for $B \rightarrow K \ell^{+} \ell^{-}$depends only on

$$
\rho_{1}=\left|\kappa \frac{2 m_{b} m_{B}}{q^{2}} \mathcal{C}_{7}^{\text {eff }}+\mathcal{C}_{9}^{\text {eff }}\right|^{2}+\left|\mathcal{C}_{10}\right|^{2}
$$

- ρ_{1} known from $B \rightarrow K^{*} \ell^{+} \ell^{-}$- Bobeth, Hiller, van $\operatorname{Dyk}(2010,2011)$ arXiv: 1006. 5013, arXiv: 1105.0376
- same sensitivity to ρ_{1} in both decays
- CP asymmetry

$$
\begin{aligned}
A_{\mathrm{CP}} & =\frac{d \Gamma\left[\bar{B}^{0} \rightarrow \bar{K}^{0} \ell^{+} \ell^{-}\right] / d q^{2}-d \Gamma\left[B^{0} \rightarrow K^{0} \ell^{+} \ell^{-}\right] / d q^{2}}{d \Gamma\left[\bar{B}^{0} \rightarrow \bar{K}^{0} \ell^{+} \ell^{-}\right] / d q^{2}+d \Gamma\left[B^{0} \rightarrow K^{0} \ell^{+} \ell^{-}\right] / d q^{2}} \\
& =\frac{\rho_{1}-\bar{\rho}_{1}}{\rho_{1}+\bar{\rho}_{1}}=a_{\mathrm{CP}}^{(1)}
\end{aligned}
$$

universal in massless $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$decays

Constraining Wilson Coefficients

Procedure

- complex-valued Wilson coefficients $\left|\mathcal{C}_{i}\right| e^{i \phi_{i}}$
- scan over $\mathcal{C}_{7,9,10}$, leave other Wilson coefficients at SM values
- six-dimensional scan grid with about $6 \cdot 10^{8}$ sampling points
- determine χ^{2} (distance) to experimental results
- reduction of information necessary:
- calculate likelihood function $\mathcal{L}=\exp \left(-\chi^{2} / 2\right)$
- find sets that contain $1 \sigma, 2 \sigma, \ldots$ of total likelihood
- project sets onto two-dimensional planes, e.g. $\left|\mathcal{C}_{9}\right|-\left|\mathcal{C}_{10}\right|$

EOS

- software framework for the evaluation of flavor observables
- obtainable from http://project.het.physik.tu-dortmund.de/eos/

Constraining Wilson Coefficients - Results

Combined analysis

- colored areas include
- $B \rightarrow K^{*} \ell^{+} \ell^{-}$: Belle, CDF, LHCb
- $B \rightarrow K \ell^{+} \ell^{-}$: Belle, CDF
- $B \rightarrow X_{s} \ell^{+} \ell^{-}$: BaBar, Belle
- contour without $B \rightarrow K \ell^{+} \ell^{-}$
- green square marks SM prediction
- slightly improved constraints on the Wilson coefficients
- waiting for $B \rightarrow K \ell^{+} \ell^{-}$data from LHCb
- $\operatorname{Br}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)<8 \cdot 10^{-9}$
- $1.0 \leq\left|\mathcal{C}_{9}\right| \leq 7.0 @ 95 \% \mathrm{CL}$
- $1.8 \leq\left|\mathcal{C}_{10}\right| \leq 5.5$ @ $95 \% \mathrm{CL}$

Constraints on the Real Wilson Coefficients

- ignore all phases $\notin\{0, \pi\}$
- $\mathcal{C}_{9}-\mathcal{C}_{10}$ plane: ambiguity $C_{7} \lessgtr 0\left(C_{7}^{S M}<0\right)$
- compatible with SM prediction
- Combined analysis:
q_{0}^{2} : zero-crossing of $A_{F B}$ in $B \rightarrow K^{*} \ell^{+} \ell^{-}$:
- $\mathcal{C}_{7}<0: q_{0}^{2}>2.6 \mathrm{GeV}^{2}$
- $\mathcal{C}_{7}>0: q_{0}^{2}>1.7 \mathrm{GeV}^{2}$

Summary and Outlook

Summary

- analysis of $B \rightarrow K \ell^{+} \ell^{-}$at low recoil with heavy quark OPE by Grinstein and Pirjol
- same short distance coupling for $B \rightarrow K \ell^{+} \ell^{-}$as in $B \rightarrow K^{*} \ell^{+} \ell^{-}$ (massless case)
- present $B \rightarrow K \ell^{+} \ell^{-}$data already contribute to combined analysis

Outlook

- 2011: LHCb collected $>1 \mathrm{fb}^{-1}$, equivalent to about 1000 events for each channel: $B \rightarrow K \mu^{+} \mu^{-}$and $B \rightarrow K^{*} \mu^{+} \mu^{-}$

Backup

Extended Operator Bases

- helicity flipped-operators

$$
\mathscr{O}_{7^{\prime}} \propto\left[\bar{s} \sigma^{\mu \nu} P_{L} b\right] F_{\mu \nu} \quad \mathscr{O}_{9^{\prime}\left(10^{\prime}\right)} \propto\left[\bar{s} \gamma^{\mu} P_{R} b\right]\left[\bar{\ell} \gamma_{\mu}\left(\gamma_{5}\right) \ell\right]
$$

- scalar and pseudoscalar operators

$$
\mathscr{O}_{S, S^{\prime}} \propto\left[\bar{s} P_{R, L} b\right][\bar{\ell} \ell] \quad \mathscr{O}_{P, P^{\prime}} \propto\left[\bar{s} P_{R, L} b\right]\left[\bar{\ell} \gamma_{5} \ell\right]
$$

- tensor and pseudotensor operators

$$
\mathscr{O}_{T} \propto\left[\bar{s} \sigma_{\mu \nu} b\right]\left[\bar{\ell} \sigma^{\mu \nu} \ell\right] \quad \mathscr{O}_{T 5} \propto\left[\bar{s} \sigma_{\mu \nu} b\right]\left[\bar{\ell} \sigma^{\mu \nu} \gamma_{5} \ell\right]
$$

$A_{F B}$ zero crossing of $B \rightarrow K^{*} \ell^{+} \ell^{-}$

- root of the forward-backward asymmetry

- $\mathcal{C}_{7}>0: q_{0}^{2}>1.7 \mathrm{GeV}^{2}$
- $\mathcal{C}_{7}<0-$ SM-like: $q_{0}^{2}>2.6 \mathrm{GeV}^{2}$

Performance of Improved Isgur-Wise Relation at Low Recoil

$$
R_{T}\left(q^{2}\right):=\frac{q^{2}}{m_{B}\left(m_{B}+m_{K}\right)} \frac{f_{T}\left(q^{2}\right)}{f_{+}\left(q^{2}\right)}
$$

