$$
B \rightarrow K \ell^{+} \ell^{-} \text {and EOS }
$$

Christian Wacker

TU Dortmund
Theoretische Physik III

based on
Bobeth, Hiller, van Dyk, CW (DO-TH 11/23, to appear)

BSM-Seminar WS 2011
"Physik jenseits des Standardmodells"
03. November 2011

Introduction

Searching for New Physics (NP)

- Standard Model (SM) very successful but incomplete (unification with gravity, hierarchy problem, ...) \Rightarrow search for new physics
- extensions to SM predict additional particle content (e.g. supersymmetry)
- direct search: available energy \simeq particle mass
- indirect search: NP contribution to loop processes (lower energy) \Rightarrow need precise measurements and calculations

Rare B Decays

- small branching ratio: $10^{-5}\left(B \rightarrow K^{*} \gamma\right)$ to $10^{-8}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$
\Rightarrow sensitive to new physics
- great number of B mesons at B factories (e.g. BaBar, Belle) and LHCb

Introduction to $B^{-} \rightarrow \mathrm{K}^{-} \ell^{+} \ell^{-}$decays

- parton level: $b \rightarrow s \ell^{+} \ell^{-}$, mediated by Flavor Changing Neutral Currents (FCNCs)

$$
\begin{aligned}
B^{-} & =(b \bar{u}) \\
K^{-} & =(s \bar{u}) \\
\ell & \in\{e, \mu, \tau\}
\end{aligned}
$$

- FCNCs forbidden at tree level in SM, but not through loops
- GIM mechanism \& FCNCs \Rightarrow rare process

Introduction to $B^{-} \rightarrow \mathrm{K}^{-} \ell^{+} \ell^{-}$decays

- differential branching fraction \mathcal{B}
- $\sqrt{q^{2}}=$ dilepton invariant mass
- SM prediction with form factors from Khodjamirian et al. (2010)
- experimental data from BaBar (2006) hep-ex/0604007, Belle arXiv:0904.0770 (2009) and CDF (2011) arXiv:1107.3753, total number events <400

large recoil $q^{2} \ll m_{b}^{2}$
Bobeth, Hiller, Piranishvili (2007) arXiv:0709.4174
low recoil $q^{2} \approx m_{b}^{2}$ this work

Operator Product Expansion (OPE)

- two energy scales involved
- weak scale $\mathcal{O}\left(m_{W}\right)$
- hadronic scale $\mathcal{O}\left(m_{b}\right)$
- systematic and model-independent treatment with an OPE
- effective Hamiltonian for $b \rightarrow s \ell^{+} \ell^{-}$

$$
\mathcal{H}_{\mathrm{eff}}=-\frac{4 G_{\mathrm{F}}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i=1}^{10} \mathcal{C}_{i}(\mu) \mathscr{O}_{i}(\mu)+\mathcal{O}\left(V_{u b} V_{u s}^{*}\right)
$$

- Fermi-constant G_{F} from weak interactions
- CKM elements $V_{t b} V_{t s}^{*}$ - top, charm dominant - up Cabibbo suppressed
- Wilson coefficients $\mathcal{C}_{i}(\mu)$
- local operators $\mathscr{O}_{i}(\mu)$
- renormalization scale μ

Operator Product Expansion

$$
\mathcal{H}_{\text {eff }}=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i=1}^{10} c_{i}(\mu) \mathscr{O}_{i}(\mu)
$$

- calculate amplitude twice at $\mathcal{O}\left(m_{W}\right)$
- full theory
- effective Hamiltonian
- match the results $\Rightarrow \mathcal{C}_{i}$
- QCD asymptotically free
 \Rightarrow perturbative methods apply
- heavy particles (top, W-, Z-boson) integrated out
- use Renormalization Group Equations (RGE) to evolve \mathcal{C}_{i} to scale $\mathcal{O}\left(m_{b}\right)$
- sum large logarithms $\ln \left(m_{W} / \mu\right) \approx 3$
- separation into long-distance \mathscr{O}_{i} and short-distance \mathcal{C}_{i} physics

Operator Product Expansion

- most relevant operators for $B \rightarrow K \ell^{+} \ell^{-}$

$$
\mathscr{O}_{7} \propto\left[\bar{s} \sigma^{\mu \nu} P_{R} b\right] F_{\mu \nu} \quad \mathscr{O}_{9(10)} \propto\left[\bar{s} \gamma^{\mu} P_{L} b\right]\left[\bar{\ell} \gamma_{\mu}\left(\gamma_{5}\right) \ell\right]
$$

New Physics

- modified Wilson coefficients (e.g. new heavy particles)
- new operators (helicity-flipped, scalar, tensor, ...)
- not investigated

CP Violation (CPV)

- SM: CPV from complex-phase of CKM matrix
- SM: \mathcal{C}_{i} real-valued in this basis
- complex-valued $\mathcal{C}_{i} \Rightarrow$ new source of CPV

Hadronic Matrix Elements and Form Factors

Three Form Factors

- $\langle K| \bar{s} \gamma^{\mu} b|B\rangle \sim f_{+}, f_{0}$
- $\langle K| \bar{s} \sigma^{\mu \nu} b|B\rangle \sim f_{T}$
- biggest source of uncertainties
- reduction through form factor relation

Calculation

- different parametrizations
- non-perturbative methods
- Light Cone Sum Rules (LCSR)
- large recoil region
- expansion in $1 / E_{K}$
- Lattice
- low recoil region
- $E_{K}<$ inverse lattice spacing

LCSR - Khodjamirian et al. [KMPW]
arXiv:1006:4945

Comparison of Form Factors

Form Factors Normalized to [KMPW]

- solid - LCSR - Ball, Zwicky [BZ] hep-ph/0406232
- dashed - LCSR - Bharucha, Feldmann, Wick [BFW] arxiv:1004.3249
- points - Lattice - Liu et al. [Liu] (preliminary) arXiv:1101.2726

- [KMPW], [BFW] and [Liu] in good agreement
- Use [KMPW] (known uncertainties)

Form Factor Relation hep.ph/0040250

Heavy Quark Effective Theory (HQET)

- meson with heavy and light quark, e.g. $B^{-}=(b \bar{u})$
- limit $m_{b} \rightarrow \infty$ with velocity fixed

Improved Isgur-Wise Relation

- express QCD matrix elements through an OPE in $1 / m_{b}$ using HQET fields
- relate HQET currents to quark currents

$$
\begin{aligned}
f_{T}\left(q^{2}\right) & =\frac{\left(m_{B}+m_{K}\right) m_{B}}{q^{2}} \kappa f_{+}\left(q^{2}\right)+\mathcal{O}\left(\alpha_{s}, \frac{\Lambda}{m_{b}}\right) \\
\kappa & =1+\mathcal{O}\left(\alpha_{s}^{2}\right) \text { for } \mu=m_{b}
\end{aligned}
$$

- reduction of independent form factors: $3 \rightarrow 2$

Performance of Improved Isgur-Wise Relation at Low Recoil

$$
R_{T}\left(q^{2}\right):=\frac{q^{2}}{m_{B}\left(m_{B}+m_{K}\right)} \frac{f_{T}\left(q^{2}\right)}{f_{+}\left(q^{2}\right)}
$$

Low Recoil Framework by Grinstein, Pirjol (2004) hep.ph/0404250

- improved Isgur-Wise relation
- OPE in $1 / Q$ with $Q \in\left\{m_{B}, \sqrt{q^{2}}\right\}$
- $\left\langle\mathscr{O}_{1 \ldots 6,8}\right\rangle$ can be expressed through $\left\langle\mathscr{O}_{7,9,10}\right\rangle$
- effective coefficients

$$
\begin{aligned}
& \mathcal{C}_{7}^{\text {eff }}=\mathcal{C}_{7}+\mathcal{O}\left(\mathcal{C}_{3} \ldots 6, \alpha_{s} \mathcal{C}_{1,2,8}, \frac{m_{c}^{2}}{q^{2}}\right) \\
& \mathcal{C}_{9}^{\text {eff }}=\mathcal{C}_{9}+\left(\frac{4}{3} \mathcal{C}_{1}+\mathcal{C}_{2}\right) h\left(q^{2}\right)+\mathcal{O}\left(\mathcal{C}_{3 \ldots 6}, \alpha_{s} \mathcal{C}_{1,2,8}, \frac{m_{c}^{2}}{q^{2}}\right)
\end{aligned}
$$

- better control of non-perturbative matrix elements of operators $(\bar{s} b)(\bar{q} q)$

Universal Short Distance Couplings at Low Recoil

for negligible lepton masses, $\ell \in\{e, \mu\}$

- amplitude for $B \rightarrow K \ell^{+} \ell^{-}$depends only on ρ_{1} ρ_{1} : certain combination of Wilson coefficients

$$
\rho_{1}=\left|\kappa \frac{2 m_{b} m_{B}}{q^{2}} \mathcal{C}_{7}^{\text {eff }}+\mathcal{C}_{9}^{\text {eff }}\right|^{2}+\left|\mathcal{C}_{10}\right|^{2}
$$

- ρ_{1} known from $B \rightarrow K^{*} \ell^{+} \ell^{-}$- Bobeth, Hiller, van Dyk (2010) arXiv: 1006.5013
- same sensitivity to ρ_{1} in both decays

Branching Ratio $B^{-} \rightarrow K^{-} \mu^{+} \mu^{-}$

uncertainties

- form factors
- CKM matrix elements, λ and A of Wolfenstein parametrization
- short-distance physics μ
- sub-leading contributions $\mathcal{O}\left(1 / m_{b}\right)$

Branching Ratio $B^{-} \rightarrow K^{-} \tau^{+} \tau^{-}$

- sensitive to $\left|\mathcal{C}_{10}\right|$
- not measured yet (Super B Factories)

Angular Distribution $B \rightarrow K \ell^{+} \ell^{-}$

General Result

$$
\frac{d^{2} \Gamma}{d q^{2} d \cos \theta_{\ell}}=\frac{d \Gamma}{d q^{2}}\left(\frac{F_{H}}{2}+A_{F B} \cos \theta_{\ell}+\frac{3}{4}\left(1-F_{H}\right) \sin ^{2} \theta_{\ell}\right)
$$

- SM: forward-backward asymmetry $A_{F B}$ vanishes
- flat term F_{H} : deviation from

$$
\frac{d^{2} \Gamma}{d q^{2} d \cos \theta_{\ell}} \propto \sin ^{2} \theta
$$

Kinematics - lepton CMS

Flat Term F_{H}

- normalized observable \Rightarrow cancellation of hadronic uncertainties
- negligible for electrons

CP asymmetry

- massless case $\ell \in\{e, \mu\}$

$$
\begin{aligned}
A_{\mathrm{CP}} & =\frac{d \Gamma\left[\bar{B}^{0} \rightarrow \bar{K}^{0} \ell^{+} \ell^{-}\right] / d q^{2}-d \Gamma\left[B^{0} \rightarrow K^{0} \ell^{+} \ell^{-}\right] / d q^{2}}{d \Gamma\left[\bar{B}^{0} \rightarrow \bar{K}^{0} \ell^{+} \ell^{-}\right] / d q^{2}+d \Gamma\left[B^{0} \rightarrow K^{0} \ell^{+} \ell^{-}\right] / d q^{2}} \\
& =\frac{\rho_{1}-\bar{\rho}_{1}}{\rho_{1}+\bar{\rho}_{1}}=a_{\mathrm{CP}}^{(1)}
\end{aligned}
$$

- $\rho_{1} \rightarrow \bar{\rho}_{1}$: conjugate weak phases
- $a_{\mathrm{CP}}^{(1)}$ known from $B \rightarrow K^{*} \ell^{+} \ell^{-}$- Bobeth, Hiller, van Dyk (2011) arXiv:1105.0376
- CP asymmetry universal in massless $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$decays

EOS

Overview

- software framework for the evaluation of flavor observables
- created by Danny van Dyk
- EOS collaboration: Frederik Beaujean, Christoph Bobeth, Danny van Dyk, CW
- written $\mathrm{C}++11$

Features

- NNLO RGE running of Wilson coefficients, α_{s} and $\overline{\mathrm{MS}}$ quark masses
- calculation of parameter constraints (e.g. for Wilson coefficients \mathcal{C}_{i})
- includes all observables presented and many more:
- $B \rightarrow K^{*} \ell^{+} \ell^{-}$
- $B_{s, d} \rightarrow \ell^{+} \ell^{-}$
- $B \rightarrow K^{*} \gamma$
obtainable from http://project.het.physik.tu-dortmund.de/eos/

Constraining Wilson Coefficients

- complex-valued Wilson coefficients $\left|\mathcal{C}_{i}\right| e^{i \phi_{i}}$, i.e. CP violation beyond SM
- scan over $\mathcal{C}_{7,9,10}$, leave other Wilson coefficients at SM values
- six-dimensional scan grid with about $6 \cdot 10^{8}$ sampling points
- determine χ^{2} (distance) to experimental results
- reduction of information necessary:
- calculate likelihood function $\mathcal{L}=\exp \left(-\chi^{2} / 2\right)$
- find sets that contain $1 \sigma, 2 \sigma, \ldots$ of total likelihood
- project sets onto two-dimensional planes, e.g. $\left|\mathcal{C}_{9}\right|-\left|\mathcal{C}_{10}\right|$

Constraining Wilson Coefficients - $B \rightarrow K \mu^{+} \mu^{-}$

$\left|\mathcal{C}_{9}\right|$ vs. $\left|\mathcal{C}_{10}\right|$ for $B \rightarrow K \ell \ell$ all

- branching ratio from Belle and CDF
- green mark represents SM prediction
- branching ratio $B \rightarrow K \mu^{+} \mu^{-}$depends solely on

$$
\rho_{1}=\left|\kappa \frac{2 m_{b} m_{B}}{q^{2}} \mathcal{C}_{7}^{\mathrm{eff}}+\mathcal{C}_{9}^{\mathrm{eff}}\right|^{2}+\left|\mathcal{C}_{10}\right|^{2}
$$

- weak sensitivity to ϕ_{9}
- no sensitivity to ϕ_{10}

Constraints on the Real Wilson Coefficients - $B \rightarrow K \mu^{+} \mu^{-}$

- ignore all phases $\notin\{0, \pi\}$
- $\mathcal{C}_{9}-\mathcal{C}_{10}$ plane: ambiguity $C_{7} \lessgtr 0\left(C_{7}^{S M}<0\right)$
- compatible with SM prediction

Constraining Wilson Coefficients

Combined analysis

- colored areas include
- $B \rightarrow K^{*} \ell^{+} \ell^{-}$: Belle, CDF, LHCb
- $B \rightarrow K \ell^{+} \ell^{-}$: Belle, CDF
- $B \rightarrow X_{s} \ell^{+} \ell^{-}$: BaBar, Belle
- contour without $B \rightarrow K \ell^{+} \ell^{-}$
- no data from LHCb on $B \rightarrow K \ell^{+} \ell^{-}$yet
\Rightarrow low impact on combined analysis
- improved constraints on the Wilson coefficients

Summary and Outlook

Summary

- analysis of $B \rightarrow K \ell^{+} \ell^{-}$at low recoil with heavy quark OPE by Grinstein and Pirjol
- same short distance coupling for $B \rightarrow K \ell^{+} \ell^{-}$as in $B \rightarrow K^{*} \ell^{+} \ell^{-}$ (massless case)
- present $B \rightarrow K \ell^{+} \ell^{-}$data already contribute to combined analysis

Outlook

- 2011: LHCb collected $>1 \mathrm{fb}^{-1}$, equivalent to 1000 events of $B \rightarrow K \mu^{+} \mu^{-}$
- Bayesian analysis, better estimation of uncertainties in collaboration with Beaujean, Bobeth, van Dyk (to appear)

Backup

Real Contraints - Combined Analysis

Extended Operator Bases

- helicity flipped-operators

$$
\mathscr{O}_{7^{\prime}} \propto\left[\bar{s} \sigma^{\mu \nu} P_{L} b\right] F_{\mu \nu} \quad \mathscr{O}_{9^{\prime}\left(10^{\prime}\right)} \propto\left[\bar{s} \gamma^{\mu} P_{R} b\right]\left[\bar{\ell} \gamma_{\mu}\left(\gamma_{5}\right) \ell\right]
$$

- scalar and pseudoscalar operators

$$
\mathscr{O}_{S, S^{\prime}} \propto\left[\bar{s} P_{R, L} b\right][\bar{\ell} \ell] \quad \mathscr{O}_{P, P^{\prime}} \propto\left[\bar{s} P_{R, L} b\right]\left[\bar{\ell} \gamma_{5} \ell\right]
$$

- tensor and pseudotensor operators

$$
\mathscr{O}_{T} \propto\left[\bar{s} \sigma_{\mu \nu} b\right]\left[\bar{\ell} \sigma^{\mu \nu} \ell\right] \quad \mathscr{O}_{T 5} \propto\left[\bar{s} \sigma_{\mu \nu} b\right]\left[\bar{\ell} \sigma^{\mu \nu} \gamma_{5} \ell\right]
$$

