$B \rightarrow K \, \ell^+ \, \ell^-$ and EOS

Christian Wacker

TU Dortmund Theoretische Physik III

based on Bobeth, Hiller, van Dyk, CW (DO-TH 11/23, to appear)

BSM-Seminar WS 2011 "Physik jenseits des Standardmodells" 03. November 2011

Christian Wacker (TU Dortmund)

 $B \rightarrow K \ell^+ \ell^-$ and EOS

Introduction

Searching for New Physics (NP)

- Standard Model (SM) very successful but incomplete (unification with gravity, hierarchy problem, ...) ⇒ search for new physics
- extensions to SM predict additional particle content (e.g. supersymmetry)
- ullet direct search: available energy \simeq particle mass
- indirect search: NP contribution to loop processes (lower energy)
 ⇒ need precise measurements and calculations

Rare B Decays

- small branching ratio: $10^{-5} (B \to K^* \gamma)$ to $10^{-8} (B_s \to \mu^+ \mu^-)$ \Rightarrow sensitive to new physics
- great number of B mesons at B factories (e.g. BaBar, Belle) and LHCb

Introduction to $B^- \to K^- \ell^+ \ell^-$ decays

- parton level: $b \rightarrow s \, \ell^+ \, \ell^-$, mediated by Flavor Changing Neutral Currents (FCNCs)
- FCNCs forbidden at tree level in SM, but not through loops
- GIM mechanism & FCNCs \Rightarrow rare process

 $B^{-} = (b \overline{u})$ $K^{-} = (s \overline{u})$ $\ell \in \{e, \mu, \tau\}$

Introduction to $B^- \to K^- \ell^+ \ell^-$ decays

- \bullet differential branching fraction ${\cal B}$
- $\sqrt{q^2}$ = dilepton invariant mass
- SM prediction with form factors from Khodjamirian et al. (2010)
- experimental data from BaBar (2006) $_{\rm hep-ex/0604007}$, Belle $_{\rm arXiv:0904.0770}$ (2009) and CDF (2011) $_{\rm arXiv:1107.3753}$, total number events <400

Operator Product Expansion (OPE)

- two energy scales involved
 - weak scale $\mathcal{O}(m_W)$
 - hadronic scale O(m_b)
- systematic and model-independent treatment with an OPE
- effective Hamiltonian for $b o s \, \ell^+ \ell^-$

$$\mathcal{H}_{eff} = -\frac{4 G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} \mathcal{C}_i(\mu) \mathscr{O}_i(\mu) + \mathcal{O}(V_{ub} V_{us}^*)$$

- Fermi-constant G_F from weak interactions
- CKM elements $V_{tb} V_{ts}^*$ top, charm dominant up Cabibbo suppressed
- Wilson coefficients $C_i(\mu)$
- local operators $\mathcal{O}_i(\mu)$
- renormalization scale μ

Operator Product Expansion

$$\mathcal{H}_{\rm eff} = -\frac{4 \, G_{\rm F}}{\sqrt{2}} \, V_{tb} \, V_{ts}^* \sum_{i=1}^{10} \frac{\mathcal{C}_i(\mu) \, \mathscr{O}_i(\mu)}{\mathcal{O}_i(\mu)}$$

- calculate amplitude twice at $\mathcal{O}(m_W)$
 - full theory
 - effective Hamiltonian
- match the results $\Rightarrow \mathcal{C}_i$
- QCD asymptotically free
 ⇒ perturbative methods apply
- heavy particles (top, W-, Z-boson) integrated out
- use Renormalization Group Equations (RGE) to evolve C_i to scale $\mathcal{O}(m_b)$
 - sum large logarithms $\ln(m_W/\mu) \approx 3$
- separation into long-distance \mathscr{O}_i and short-distance \mathcal{C}_i physics

Operator Product Expansion

• most relevant operators for $B o K \ell^+ \ell^-$

 $\mathscr{O}_{7} \propto [\bar{s} \, \sigma^{\mu\nu} \, P_{R} \, b] \, F_{\mu\nu} \qquad \mathscr{O}_{9(10)} \propto [\bar{s} \, \gamma^{\mu} \, P_{L} \, b][\bar{\ell} \, \gamma_{\mu} \, (\gamma_{5}) \, \ell]$

New Physics

- modified Wilson coefficients (e.g. new heavy particles)
- new operators (helicity-flipped, scalar, tensor, ...)
 - not investigated

CP Violation (CPV)

- SM: CPV from complex-phase of CKM matrix
- SM: *C_i* real-valued in this basis
- complex-valued $C_i \Rightarrow$ new source of CPV

Hadronic Matrix Elements and Form Factors

Three Form Factors

- $\langle K | \overline{s} \gamma^{\mu} b | B \rangle \sim f_+, f_0$
- $\langle K | \overline{s} \sigma^{\mu\nu} b | B \rangle \sim f_T$
- biggest source of uncertainties
 - reduction through form factor relation

Calculation

- different parametrizations
- on non-perturbative methods
- Light Cone Sum Rules (LCSR)
 - large recoil region
 - expansion in $1/E_K$
- Lattice
 - Iow recoil region
 - E_{κ} < inverse lattice spacing

LCSR - Khodjamirian et al. [KMPW]

Comparison of Form Factors Form Factors Normalized to [KMPW]

- solid LCSR Ball, Zwicky [BZ] hep-ph/0406232
- dashed LCSR Bharucha, Feldmann, Wick [BFW] arXiv:1004.3249
- points Lattice Liu et al. [Liu] (preliminary) arXiv:1101.2726

- [KMPW], [BFW] and [Liu] in good agreement
 - Use [KMPW] (known uncertainties)

Form Factor Relation hep-ph/0404250

Heavy Quark Effective Theory (HQET)

- ullet meson with heavy and light quark, e.g. $B^-=(b\overline{u})$
- limit $m_b
 ightarrow \infty$ with velocity fixed

Improved Isgur-Wise Relation

- express QCD matrix elements through an OPE in 1/mb using HQET fields
- relate HQET currents to quark currents

$$f_{T}(q^{2}) = \frac{(m_{B} + m_{K})m_{B}}{q^{2}} \kappa f_{+}(q^{2}) + \mathcal{O}\left(\alpha_{s}, \frac{\Lambda}{m_{b}}\right)$$
$$\kappa = 1 + \mathcal{O}\left(\alpha_{s}^{2}\right) \text{ for } \mu = m_{b}$$

• reduction of independent form factors: $3 \rightarrow 2$

Performance of Improved Isgur-Wise Relation at Low Recoil

Low Recoil Framework by Grinstein, Pirjol (2004) hep-ph/0404250

- improved Isgur-Wise relation
- OPE in 1/Q with $Q \in \{m_B, \sqrt{q^2}\}$
 - $\langle \mathcal{O}_{1...6,8} \rangle$ can be expressed through $\langle \mathcal{O}_{7,9,10} \rangle$
 - effective coefficients

$$\begin{aligned} \mathcal{C}_{7}^{\text{eff}} &= \mathcal{C}_{7} + \mathcal{O}\left(\mathcal{C}_{3\dots6}, \alpha_{s} \, \mathcal{C}_{1,2,8}, \frac{m_{c}^{2}}{q^{2}}\right) \\ \mathcal{C}_{9}^{\text{eff}} &= \mathcal{C}_{9} + \left(\frac{4}{3}\mathcal{C}_{1} + \mathcal{C}_{2}\right)h\left(q^{2}\right) + \mathcal{O}\left(\mathcal{C}_{3\dots6}, \alpha_{s} \, \mathcal{C}_{1,2,8}, \frac{m_{c}^{2}}{q^{2}}\right) \end{aligned}$$

 better control of non-perturbative matrix elements of operators (\$\overline{s}\$ b)(\$\overline{q}\$ q)

Universal Short Distance Couplings at Low Recoil

for negligible lepton masses, $\ell \in \{e,\mu\}$

• amplitude for $B \to K \ell^+ \ell^-$ depends only on ρ_1 ρ_1 : certain combination of Wilson coefficients

$$\rho_1 = \left| \kappa \frac{2 \, m_b \, m_B}{q^2} \, \mathcal{C}_7^{\mathsf{eff}} + \mathcal{C}_9^{\mathsf{eff}} \right|^2 + |\mathcal{C}_{10}|^2$$

- ρ_1 known from $B \to K^* \ell^+ \ell^-$ Bobeth, Hiller, van Dyk (2010) arXiv:1006.5013
- ullet same sensitivity to ho_1 in both decays

uncertainties

- form factors
- CKM matrix elements, λ and A of Wolfenstein parametrization
- ullet short-distance physics μ
- sub-leading contributions $\mathcal{O}(1/m_b)$

Branching Ratio $B^- \rightarrow K^- \tau^+ \tau^-$

• sensitive to $|\mathcal{C}_{10}|$

• not measured yet (Super B Factories)

Angular Distribution $B \to K \ell^+ \ell^-$

General Result

$$\frac{d^2\Gamma}{dq^2\,d\cos\theta_\ell} = \frac{d\Gamma}{dq^2}\left(\frac{F_H}{2} + A_{FB}\cos\theta_\ell + \frac{3}{4}\left(1 - F_H\right)\sin^2\theta_\ell\right)$$

- SM: forward-backward asymmetry A_{FB} vanishes
- flat term F_H : deviation from

$$\frac{d^2\Gamma}{dq^2\,d\cos\theta_\ell}\propto \sin^2\theta$$

Kinematics - lepton CMS

Flat Term F_H

ullet normalized observable \Rightarrow cancellation of hadronic uncertainties

negligible for electrons

CP asymmetry

• massless case $\ell \in \{e, \mu\}$

$$A_{\mathsf{CP}} = \frac{d\Gamma[\overline{B}{}^{0} \to \overline{K}{}^{0}\ell^{+}\ell^{-}]/dq^{2} - d\Gamma[B^{0} \to K^{0}\ell^{+}\ell^{-}]/dq^{2}}{d\Gamma[\overline{B}{}^{0} \to \overline{K}{}^{0}\ell^{+}\ell^{-}]/dq^{2} + d\Gamma[B^{0} \to K^{0}\ell^{+}\ell^{-}]/dq^{2}}$$
$$= \frac{\rho_{1} - \overline{\rho}_{1}}{\rho_{1} + \overline{\rho}_{1}} = a_{\mathsf{CP}}^{(1)}$$

• $ho_1
ightarrow \overline{
ho}_1$: conjugate weak phases

- $a_{CP}^{(1)}$ known from $B \to K^* \ell^+ \ell^-$ Bobeth, Hiller, van Dyk (2011) arXiv:1105.0376
- CP asymmetry universal in massless $B o K^{(*)} \ell^+ \ell^-$ decays

EOS

Overview

- software framework for the evaluation of flavor observables
- created by Danny van Dyk
- EOS collaboration: Frederik Beaujean, Christoph Bobeth, Danny van Dyk, CW
- written C++11

Features

- ullet NNLO RGE running of Wilson coefficients, α_{s} and $\overline{\rm MS}$ quark masses
- calculation of parameter constraints (e.g. for Wilson coefficients C_i)
- includes all observables presented and many more:
 - $B \to K^* \ell^+ \ell^-$
 - ▶ $B_{s,d} \to \ell^+ \ell^-$
 - $\blacktriangleright B \to K^* \gamma$

obtainable from http://project.het.physik.tu-dortmund.de/eos/

Constraining Wilson Coefficients

- complex-valued Wilson coefficients $|C_i| e^{i \phi_i}$, i.e. CP violation beyond SM
- \bullet scan over $\mathcal{C}_{7,9,10},$ leave other Wilson coefficients at SM values
- $\bullet\,$ six-dimensional scan grid with about $6\cdot 10^8$ sampling points
- determine χ^2 (distance) to experimental results
- reduction of information necessary:
 - calculate likelihood function $\mathcal{L} = \exp(-\chi^2/2)$
 - find sets that contain 1σ , 2σ , ... of total likelihood
 - ▶ project sets onto two-dimensional planes, e.g. $|C_9|$ - $|C_{10}|$

Constraining Wilson Coefficients - $B \rightarrow K \mu^+ \mu^-$

$$\rho_{1} = \left| \kappa \, \frac{2 \, m_{b} \, m_{B}}{q^{2}} \, \mathcal{C}_{7}^{\text{eff}} + \mathcal{C}_{9}^{\text{eff}} \right|^{2} + \left| \mathcal{C}_{10} \right|^{2}$$

- weak sensitivity to ϕ_9
- no sensitivity to ϕ_{10}

Christian Wacker (TU Dortmund)

Constraints on the Real Wilson Coefficients - $B
ightarrow K \mu^+ \mu^-$

- ignore all phases $\notin \{0, \pi\}$
- C_9 - C_{10} plane: ambiguity $C_7 \leq 0$ ($C_7^{SM} < 0$)
- compatible with SM prediction

Constraining Wilson Coefficients

Combined analysis

- colored areas include
 - $B o K^* \ell^+ \ell^-$: Belle, CDF, LHCb
 - $B \to K \ell^+ \ell^-$: Belle, CDF
 - $B o X_s \, \ell^+ \, \ell^-$: BaBar, Belle
- contour without $B o K \, \ell^+ \, \ell^-$
- no data from LHCb on $B \to K \, \ell^+ \, \ell^-$ yet
 - \Rightarrow low impact on combined analysis
- improved constraints on the Wilson coefficients

Summary and Outlook

Summary

- analysis of $B \to K \ell^+ \ell^-$ at low recoil with heavy quark OPE by Grinstein and Pirjol
- same short distance coupling for $B \to K \ell^+ \ell^-$ as in $B \to K^* \ell^+ \ell^-$ (massless case)
- ullet present $B o K \ell^+ \ell^-$ data already contribute to combined analysis

Outlook

- 2011: LHCb collected > 1 fb^{-1}, equivalent to 1000 events of $B \to K \mu^+ \mu^-$
- Bayesian analysis, better estimation of uncertainties in collaboration with Beaujean, Bobeth, van Dyk (to appear)

Backup

Real Contraints - Combined Analysis

Extended Operator Bases

• helicity flipped-operators

$$\mathscr{O}_{7'} \propto \left[\bar{\mathfrak{s}} \, \sigma^{\mu\nu} \, \mathsf{P}_L \, b \,\right] \mathsf{F}_{\mu\nu} \qquad \mathscr{O}_{9'(10')} \propto \left[\bar{\mathfrak{s}} \, \gamma^{\mu} \, \mathsf{P}_R \, b \right] \left[\bar{\ell} \, \gamma_{\mu} \left(\gamma_5\right) \ell\right]$$

• scalar and pseudoscalar operators

$$\mathscr{O}_{\mathcal{S},\mathcal{S}'} \propto [\overline{\mathfrak{s}} P_{R,L} b][\overline{\ell} \ell] \qquad \mathscr{O}_{P,P'} \propto [\overline{\mathfrak{s}} P_{R,L} b][\overline{\ell} \gamma_5 \ell]$$

• tensor and pseudotensor operators

$$\mathscr{O}_{T} \propto [\overline{s} \, \sigma_{\mu\nu} \, b] [\overline{\ell} \, \sigma^{\mu\nu} \, \ell] \qquad \mathscr{O}_{T5} \propto [\overline{s} \, \sigma_{\mu\nu} \, b] [\overline{\ell} \, \sigma^{\mu\nu} \, \gamma_5 \, \ell]$$