Systematic approach to non-local charm contributions in exclusive $b \rightarrow$ sl decays

Danny van Dyk

based on Bobeth/Chrzaszcz/DvD/Virto 1705.XXXXX

SM@LHC in Amsterdam
02.05.2017

Effective theory for $b \rightarrow s$ transitions

For $\Lambda_{\mathrm{EW}}, \Lambda_{\mathrm{NP}} \gg M_{B}$: General model-independent parametrization of NP :

$$
\begin{array}{cl}
\mathcal{L}_{W}=\mathcal{L}_{\mathrm{QCD}}+\mathcal{L}_{\mathrm{QED}}+\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{\star} & \sum_{i} \mathcal{C}_{i}(\mu) \mathcal{O}_{i}(\mu) \\
\mathcal{O}_{1}=\left(\bar{c} \gamma_{\mu} P_{L} T^{a} b\right)\left(\bar{s} \gamma^{\mu} P_{L} T^{a} c\right) & \mathcal{O}_{2}=\left(\bar{c} \gamma_{\mu} P_{L} b\right)\left(\bar{s} \gamma^{\mu} P_{L} c\right) \\
\mathcal{O}_{7}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s} \sigma_{\mu \nu} P_{R} b\right) F^{\mu \nu} & \mathcal{O}_{7^{\prime}}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s} \sigma_{\mu \nu} P_{L} b\right) F^{\mu \nu} \\
\mathcal{O}_{9 \ell}=\frac{\alpha}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right) & \mathcal{O}_{9^{\prime} \ell}=\frac{\alpha}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{R} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right) \\
\mathcal{O}_{10 \ell}=\frac{\alpha}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right) & \mathcal{O}_{10^{\prime} \ell}=\frac{\alpha}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{R} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right),
\end{array}
$$

SM contributions to $\mathcal{C}_{i}\left(\mu_{b}\right)$ known to NNLL [Bobeth, Misiak, Urban '99; Misiak, Steinhauser '04; Gorbahn, Haisch '04; Gorbahn, Haisch, Misiak '05; Czakon, Haisch, Misiak '06]
$\mathcal{C}_{\text {7eff }}^{\text {SM }}=-0.3, \mathcal{C}_{9 \ell}^{\text {SM }}=4.1, \mathcal{C}_{10 \ell}^{\text {SM }}=-4.3, \mathcal{C}_{1}^{\text {SM }}=-0.4, \mathcal{C}_{2}^{\text {SM }}=1.1, \mathcal{C}_{\text {rest }}^{\text {SM }} \lesssim 10^{-2}$

Effective theory for $b \rightarrow s$ transitions

For $\Lambda_{\mathrm{EW}}, \Lambda_{\mathrm{NP}} \gg M_{B}$: General model-independent parametrization of NP :

$$
\begin{gathered}
\mathcal{L}_{W}=\mathcal{L}_{\mathrm{QCD}}+\mathcal{L}_{\mathrm{QED}}+\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{\star} \sum_{i} \mathcal{C}_{i}(\mu) \mathcal{O}_{i}(\mu) \\
\mathcal{O}_{1}=\left(\bar{c} \gamma_{\mu} P_{L} T^{a} b\right)\left(\bar{s} \gamma^{\mu} P_{L} T^{a} c\right) \\
\mathcal{O}_{7}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s} \sigma_{\mu \nu} P_{R} b\right) F^{\mu \nu} \\
\mathcal{O}_{2}=\left(\bar{c} \gamma_{\mu} P_{L} b\right)\left(\bar{s} \gamma^{\mu} P_{L} c\right) \\
\mathcal{O}_{9 \ell}=\frac{\alpha}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right) \\
\mathcal{O}_{7^{\prime}}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s} \sigma_{\mu \nu} P_{L} b\right) F^{\mu \nu} \\
\mathcal{O}_{10 \ell}=\frac{\alpha}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right)
\end{gathered} \mathcal{O}_{9^{\prime} \ell=\frac{\alpha}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{R} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right)} \quad \mathcal{O}_{10^{\prime} \ell}=\frac{\alpha}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{R} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right), ~ \$
$$

numerically leading operators
source of largest systematic uncertainty
$\mathcal{C}_{\text {7eff }}^{S M}=-0.3, \mathcal{C}_{9 \ell}^{\mathrm{SM}}=4.1, \mathcal{C}_{10 \ell}^{\mathrm{SM}}=-4.3, \mathcal{C}_{1}^{\mathrm{SM}}=-0.4, \mathcal{C}_{2}^{\mathrm{SM}}=1.1, \mathcal{C}_{\text {rest }}^{\mathrm{SM}} \lesssim 10^{-2}$

Theory of exclusive $B \rightarrow M \ell^{+} \ell^{-}$(in a nutshell)

$$
\mathcal{M}_{\lambda}=\frac{G_{F} \alpha}{\sqrt{2} \pi} V_{t b} V_{t s}^{*}\left[\left(\mathcal{A}_{\lambda}^{\mu}+\mathcal{H}_{\lambda}^{\mu}\right) \bar{u}_{\ell} \gamma_{\mu} v_{\ell}+\mathcal{B}_{\lambda}^{\mu} \bar{u}_{\ell} \gamma_{\mu} \gamma_{5} v_{\ell}\right]+\mathcal{O}\left(\alpha^{2}\right)
$$

Local:

$$
\begin{aligned}
\mathcal{A}_{\lambda}^{\mu} & =-\frac{2 m_{b} q_{\nu}}{q^{2}} \mathcal{C}_{7}\left\langle M_{\lambda}\right| \bar{s} \sigma^{\mu \nu} P_{R} b|B\rangle+\mathcal{C}_{9}\left\langle M_{\lambda}\right| \bar{s} \gamma^{\mu} P_{L} b|B\rangle \\
\mathcal{B}_{\lambda}^{\mu} & =\mathcal{C}_{10}\left\langle M_{\lambda}\right| \bar{s} \gamma^{\mu} P_{L} b|B\rangle
\end{aligned}
$$

Non-Local: $\quad \mathcal{H}_{\lambda}^{\mu}=-\frac{16 i \pi^{2}}{q^{2}} \sum_{i=1 . .6,8} \mathcal{C}_{i} \int \mathrm{~d}^{4} x e^{i q \cdot x}\left\langle M_{\lambda}\right| T\left\{\mathcal{J}_{e m}^{\mu}(x), \mathcal{O}_{i}(0)\right\}|B\rangle$
Two theory issues:

1. form factors
2. nonlocal hadronic contribution 02.05.2016
(LCSRs, LQCD, symmetry relations ...) (SCET/QCDF, OPE, LCOPE ...)

The decay $B \rightarrow K^{*} \mu^{+} \mu^{-}$

region of interest (for this talk)
polluted by $B \rightarrow K^{*} J / \psi$ "background"

The decay $B \rightarrow K^{*} \mu^{+} \mu^{-}$

region of interest (for this talk)
polluted by $B \rightarrow K^{*} J / \psi$ "background"

- uncertainty w.r.t. onset of $B \rightarrow K^{*} J / \psi$ pollution poses largest systematic theory uncertainty

Hadronic correlator: Decomposition

$$
\begin{aligned}
\mathcal{H}^{\mu}\left(q^{2}\right) & \equiv i \int \mathrm{~d}^{4} x e^{i q \cdot x}\left\langle\bar{K}^{*}(k, \eta)\right| T\left\{\bar{c} \gamma^{\mu} c(x), \mathcal{C}_{1} \mathcal{O}_{1}+\mathcal{C}_{2} \mathcal{O}_{2}(0)\right\}|\bar{B}(p)\rangle \\
& \equiv M_{B}^{2} \eta_{\alpha}^{*}\left[S_{\perp}^{\alpha \mu} \mathcal{H}_{\perp}-S_{\|}^{\alpha \mu} \mathcal{H}_{\|}-S_{0}^{\alpha \mu} \mathcal{H}_{0}\right]
\end{aligned}
$$

here
$S_{\lambda}^{\alpha \mu}$ basis of Lorentz structures (carefully chosen)
\mathcal{H}_{λ} Lorentz invariant correlation functions
λ polarization states $(\perp, \|, 0)$
our idea:

- understand analytic structure of the $\mathcal{H}_{\lambda}\left(q^{2}\right)$ to write a general parametrisation consistent with QCD.

Hadronic correlator : Analytic structure

- narrow charmonia, assumed to be stable

Hadronic correlator : Analytic structure

- narrow charmonia, assumed to be stable
red branch cut from $D \bar{D}$ production
- broad charmonia, decaying to $D \bar{D}$
\times potential mirror poles

Hadronic correlator : Analytic structure

- narrow charmonia, assumed to be stable
red branch cut from $D \bar{D}$ production
- broad charmonia, decaying to $D \bar{D}$
\times potential mirror poles
blue branch cut from light hadrons

Hadronic correlator : Analytic structure

- narrow charmonia, assumed to be stable
red branch cut from $D \bar{D}$ production
- broad charmonia, decaying to $D \bar{D}$
\times potential mirror poles
blue branch cut from light hadrons
green q^{2}-dep. imaginary part
 (due to branch cut in p^{2})

University of Zurich ${ }^{\text {VIH }}$

Understanding the p^{2} cut

- p^{2} cut arises from loop contributions
- at one loop: only right-hand cut in q^{2}
- at two loop: no analytic results available for $b \rightarrow s c \bar{c}$
series expansion available
[see e.g. Greub/Pilipp/Schupbach 2008]
- turn to $b \rightarrow d u \bar{u}$ instead as a toy analysis, for which analytic two-loop results are available

- at two loop: two sources of p^{2} cut
- $u \bar{u} d$ on shell at $q^{2}<0$
- $d \bar{d} d$ on shell at $q^{2}<0$

University of
Zurich ${ }^{\text {VIH }}$

Understanding the p^{2} cut

Trick: Add spurious momentum h to \mathcal{O}_{i} Recover physical kinematics as $h \rightarrow 0$

- consider Mandelstam variables

$$
\begin{aligned}
& s \equiv(p+h)^{2} \quad \longrightarrow \quad M_{B}^{2} \\
& u \equiv(k-h)^{2} \quad \longrightarrow \quad M_{K^{*}}^{2} \\
& t \equiv(q-h)^{2} \underset{\text { physical point }}{\longrightarrow} q^{2}
\end{aligned}
$$

$-s$ independent of t

- cut in $s \sim p^{2}$ does not translate into cut in $t \sim q^{2}$

Understanding the p^{2} cut

Trick: Add spurious momentum h to \mathcal{O}_{i} Recover physical kinematics as $h \rightarrow 0$

- consider Mandelstam variables

$$
\begin{aligned}
s & \equiv(p+h)^{2} \quad \longrightarrow
\end{aligned} M_{B}^{2}+M_{K^{*}}^{2}
$$

- two correlators:

$$
\mathcal{H}_{\lambda}\left(q^{2}\right) \rightarrow \mathcal{H}_{\lambda}^{\text {real }}\left(q^{2}\right)+i \mathcal{H}_{\lambda}^{\text {imag }}\left(q^{2}\right)
$$

- both are analytic at $q^{2} \leq 0$
- both have branch cuts at $q^{2}>0$
- the same dispersion relation governs their q^{2}-dependence
- s independent of t
- cut in $s \sim p^{2}$ does not translate into cut in $t \sim q^{2}$

University of
Zurich ${ }^{\text {Vn }}$

Setup

task 1 parametrize the correlator \mathcal{H}_{μ}

- take care to preserve the analytic structure
task 2 fit the parametrization to suitable inputs
a theoretical inputs far away from the onset of the J / ψ pole
b experimental input on the J / ψ and $\psi(2 S)$ pole
task 3 predict observables in $B \rightarrow K^{*} \mu^{+} \mu^{-}$decays
a assume the Standard Model holds
b assume a benchmark point $\mathcal{C}_{9}^{\mathrm{NP}}=-1$, compatible with present global fits
task 4 fit the parametrization also to $B \rightarrow K^{*} \mu^{+} \mu^{-}$data
a test if the predictions fit the data
b test whether modifications to $\mathcal{C}_{9}^{\mathrm{NP}}$ improve the fit

Parametrization A: $J / \psi, \psi(2 s)$ poles $+D \bar{D}$ cut

Motivated by famous " z-parametrization" of form factors
[Boyd/Grinstein/Lebed hep-ph/9412324]

1. extract the poles

$$
\mathcal{H}_{\lambda}\left(q^{2}\right) \sim \frac{1}{q^{2}-M_{J / \psi}^{2}} \frac{1}{q^{2}-M_{\psi(2 S)}^{2}} \hat{\mathcal{H}}_{\lambda}\left(q^{2}\right)
$$

2. $\hat{\mathcal{H}}_{\lambda}\left(q^{2}\right)$ is analytic except for $D \bar{D}$ cut.
3. Perform conformal mapping $q^{2} \mapsto z\left(q^{2}\right)$
4. $\hat{\mathcal{H}}_{\lambda}(z)$ analytic within unit circle $|z|=1$
5. Taylor expand $\hat{\mathcal{H}}_{\lambda}(z)$ around $z=0$
6. Good convergence expected since $|z|<0.48$ for $-5 \mathrm{GeV}^{2} \leq q^{2} \leq 14 \mathrm{GeV}^{2}$

Theory inputs

the correlator can be calculated reliably at $q^{2}<0$ by means of a light-cone OPE
[Khodjamirian et al. 1006.4945]
using $\mathcal{H}_{\perp}\left(q^{2}\right)$ as an example:

$$
\begin{aligned}
\mathcal{H}_{\perp}\left(q^{2}\right) & =\left[\# \times g\left(q^{2}, m_{c}^{2}\right)+\frac{\alpha_{s}}{4 \pi} \times \# \times\left\{F_{1}^{9}, \ldots\right\}\right] \times \mathcal{F}_{\perp}\left(q^{2}\right) \\
& +\# \times \widetilde{\mathcal{V}}_{1}\left(q^{2}\right) \\
& +\# \times \phi_{B} \otimes \mathcal{T}_{\perp} \otimes \phi_{K^{*}}
\end{aligned}
$$

- first line contains form-factor-like contributions
- LO contribution
- NLO correction (produces p^{2} cut !!)
[Asatryan et al. hep-ph/0109140]
- third term arises from soft-gluon effects only
[Khodjamirian et al. 1006.4945]
- fourth term arises from hard-gluon effects only (w/ spectator)
[Beneke et al. hep-ph/0106067 and hep-ph/0412400] details:
- compute $\mathcal{H}_{\lambda} / \mathcal{F}_{\lambda}$ at $q^{2}=-1 \mathrm{GeV}^{2}$ and $q^{2}=-5 \mathrm{GeV}^{2}$
- include (substantial) correlations across correlators and across q^{2}

University of

Experimental inputs

(task 2b \checkmark)

correlators \mathcal{H}_{λ} can be related to observables in the decays $B \rightarrow K^{*}\{J / \psi, \psi(2 S)\}$

- independent of short-distance contributions ($\mathcal{C}_{7}, \mathcal{C}_{9}$, etc) in $B \rightarrow K^{*}\left\{\gamma, \mu^{+} \mu^{-}\right\}$
- important constraints at $q^{2} \simeq 9 \mathrm{GeV}^{2}$ and $q^{2} \simeq 14 \mathrm{GeV}^{2}$
details:
- residues of the correlator can be expressed in terms of $B \rightarrow K^{*} \psi$ amplitudes
$-\mathcal{B}$ and 4 angular observables measured in $B \rightarrow K^{*} J / \psi$ and $B \rightarrow K^{*} \psi(2 S)$
[BaBar 2007, Belle 2014, LHCb 2013]
- allows to constrain all moduli and two relative phases of the amplitudes, and therefore of the residues of the correlator.

Preliminary! Predictions for the correlator

Results for $\operatorname{Re}\left(\mathcal{H}_{\perp} / \mathcal{F}_{\perp}\right)$:

discrete ambiguity in phases of the residues: (only two shown)
Left : $\phi_{J / \psi}=\pi, \phi_{\psi(2 S)}=0$
Right : $\phi_{J / \psi}=\phi_{\psi(2 S)}=\pi$

Preliminary! Predictions for P_{5}^{\prime}

(tasks 3a,3b \checkmark)

prediction within Standard Model (SM) and one benchmark point $\left(\mathcal{C}_{9}^{\mathrm{NP}}=-1\right)$

Left : $\phi_{J / \psi}=\pi, \phi_{\psi(2 S)}=0$

Right: $\phi_{J / \psi}=\phi_{\psi(2 S)}=\pi$

- great potential: for the first-time, fits gain sensitivity to inter-resonance bin
- more comprehensive usage of available data
- complementary information compared to below-resonance data

Preliminary! Challenge $B \rightarrow K^{*} \mu^{+} \mu^{-}$data

(task 4b \checkmark)
Global fit to all $B \rightarrow K^{*}\left\{\gamma, \mu^{+} \mu^{-}, J / \psi, \psi(2 S)\right\}$ data using Parametrization A

Left : $\phi_{J / \psi}=\pi, \phi_{\psi(2 S)}=0$

Right : $\phi_{J / \psi}=\phi_{\psi(2 S)}=\pi$

- for all choice of phases: pull $>4 \sigma$

Summary and outlook

- framework to access nonlocal correlator
- first approach to use both theory inputs and experimental constraints in a fit
- can accommodate existing and future theory results (systematically improvable)
- provides model-independent prior predictions for $B \rightarrow K^{(*)} \mu^{+} \mu^{-}$
- can be easily embedded in global fits
- present data in tension with parametrization A
- favours NP interpretation with $>4 \sigma$
- other results not shown here
[Bobeth/Chrzaszcz/DvD/Virto 1705.xxxxx]
- complex parametrization A: needs NLO terms
[analytic \rightarrow Greub/Virto w.i.p.]
- parametrization B: includes light-hadron cut from ψ decay

Wish list for our experimental colleagues

- rate and full set of angular observables of $B \rightarrow K^{*} \psi\left(\rightarrow \mu^{+} \mu^{-}\right)$for both narrow charmonium resonances
- $\psi(2 S)$ not available from LHCb!
- provide results including the Z_{c} states removal of Z_{c} states in recent analyses (e.g. by Belle) complicates our analysis
- smaller charmonium veto windows
- three or more bins between J / ψ and $\psi(2 S)$ for rate and angular observables
- partial overlap with previous veto windows encouraged!

