Non-lattice perspective on $V_{u b}$ and NP Searches

Danny van Dyk
Universität Zürich

Implications of LHCb measurements and future prospects
November 4th, 2015

The Tension between $V_{u b}$ Determinations

However, the determinations of $\left|V_{u b}\right|$ from the individual decay channels do not agree well:
[HFAG 2014, 1412.7515]

$$
V_{u b}^{B \rightarrow \pi \mu \nu}=(3.28 \pm 0.29) \times 10^{-3} \quad V_{u b}^{B \rightarrow X_{u} \mu \nu}=(4.41 \pm 0.21) \times 10^{-3}
$$

What can cause the observed tension? (Focussing only on theory problems)

1. we do not understand the inclusive rate well enough
2. we do not understand the exclusive hadronic matrix elements well enough
3. new physics contributions affect the inclusive and exclusive rates differently
This talk: focus on options 2 and 3!

University of
Zurich ${ }^{\text {VIH }}$
Physik Institut
Updates of QCD Sum Rules

Physik Institut

QCD Sum Rules in a Nutshell

f_{B} from a 2-point QCD Sum Rule

Apply Borel transform $p^{2} \rightarrow M^{2}$, and introduce some threshold $s_{0}>m_{b}^{2}$ so that

$$
f_{B}^{2}=\frac{1}{M_{B}^{2}} \int_{m_{b}^{2}}^{s_{0}} e^{-\frac{s-M_{B}^{2}}{M^{2}}} \rho^{O P E}(s) \mathrm{d} s
$$

Then determine s_{0} from M^{2} independence of f_{B}^{2}.

- updates all heavy-meson decay constants ($B_{(s)}$ and $D_{(s)}$ systems)
- first study to take impact of radially-excited states into account

$$
\rho(s) \supset \frac{M_{B^{\prime}} \Gamma_{B^{\prime}}}{\left(s-M_{B^{\prime}}^{2}\right)^{2}+M_{B^{\prime}}^{2} \Gamma_{B^{\prime}}^{2}} M_{B^{\prime}}^{2} f_{B^{\prime}}^{2}
$$

for radially-excited B^{\prime} meson with $J^{P}=0^{-}$

- excerpt: results for f_{B}

$$
\begin{array}{ll}
f_{B}=207_{-9}^{+17} \mathrm{MeV} & \text { w/o radially-excitated state } \\
f_{B}=200_{-10}^{+18} \mathrm{MeV} & \text { w/ radially-excitated state }
\end{array}
$$

compatible with FLAG average $\left(N_{f}=2+1\right)$ at less than 1σ

Extracting $V_{u b}$ from $B \rightarrow \tau \nu$

Branching ratio measurements

$$
\begin{array}{ll}
\mathcal{B}\left(B^{+} \rightarrow \tau^{+} \bar{\nu}\right)=(1.70 \pm 0.82) \cdot 10^{-4} & \text { [BaBar } 0912.2453 \text { (semileptonic tag)] } \\
\mathcal{B}\left(B^{+} \rightarrow \tau^{+} \bar{\nu}\right)=\left(1.83_{-0.55}^{+0.58}\right) \cdot 10^{-4} & \text { [BaBar } 1207.0698 \text { (hadronic tag)] } \\
\mathcal{B}\left(B^{+} \rightarrow \tau^{+} \bar{\nu}\right)=\left(0.72_{-0.27}^{+0.29}\right) \cdot 10^{-4} & \text { [Belle } 1208.4678 \text { (hadronic tag)] } \\
\mathcal{B}\left(B^{+} \rightarrow \tau^{+} \bar{\nu}\right)=(1.25 \pm 0.39) \cdot 10^{-4} & \text { [Belle } 1503.05613 \text { (semileptonic tag)] }
\end{array}
$$

Result for $\left|V_{u b}\right|$ [my own fitusing 1404.5891]

- result

$$
\left|V_{u b}^{B \rightarrow \tau \nu}\right|=\left(3.75_{-0.45}^{+0.45}\right) \cdot 10^{-3}
$$

- goodness of fit
$\chi^{2} /$ d.o.f. $=4.16 / 3$ good fit, with p value of 0.24

Physik Institut

QCD Sum Rules in a Nutshell

$f_{+}^{B \pi}\left(q^{2}\right)$ from a Light-Cone QCD Sum Rule

$$
\begin{array}{r}
\begin{array}{|r}
\hline\left(q^{2},(p+q)^{2}\right)=\left.\int \frac{d^{4} x}{(2 \pi)^{4}} e^{-i q \cdot x}\langle\pi(p)| \mathcal{T}\left\{J_{\mu}(x), j_{5}(0)\right\}|0\rangle\right|_{p_{\mu} \text { coeff. only }} \\
F^{\mathrm{OPE}}\left(q^{2},(p+q)^{2}\right)=\int_{m_{b}^{2}}^{\infty} \frac{\rho^{\mathrm{OPE}}\left(q^{2}, s\right) \mathrm{d} s}{s-(p+q)^{2}} \\
F^{\mathrm{had}}\left(q^{2},(p+q)^{2}\right)=\frac{f_{B} f_{+}^{B \pi}\left(q^{2}\right) M_{B}^{2}}{M_{B}^{2}-(p+q)^{2}}+\int^{\infty} \frac{\rho\left(q^{2}, s\right) \mathrm{d} s}{s-(p+q)^{2}}
\end{array}
\end{array}
$$

Final sum rule after Borel transformation

$$
f_{+}^{B \pi}=\frac{1}{f_{B} M_{B}^{2}} \int_{m_{b}^{2}}^{s_{0}} e^{-\frac{s-M_{B}^{2}}{M^{2}}} \rho^{\mathrm{OPE}}(s) \mathrm{d} s
$$

$B \rightarrow \pi$ Form Factor from LCSR

LCSR Results

- Bayesian framework with gaussian prior for Borel parameters
- constrain thresholds from first moment of sum rule
- peaking posterior for thresholds
- posterior-predictive distributions for the form factor yield

- $f_{+}\left(q^{2}\right), 1$ st and 2nd derivatives w.r.t. q^{2}
- evaluated at two q^{2} points: $q^{2}=0$ and $q^{2}=10 \mathrm{GeV}^{2}$
- 6-by-6 correlation matrix largest corr.: $\rho\left[f_{+}(0), f_{+}\left(10 \mathrm{GeV}^{2}\right)\right]=0.925$
- parametric uncertainties reduced to $\sim 8 \%$

$B \rightarrow \pi$ Form Factor from LCSR

Fit to z Series

$$
\begin{aligned}
& f_{+}^{B \pi}\left(q^{2}\right)=\frac{f_{+}^{B \pi}(0)}{1-q^{2} / M_{B^{*}}^{2}} \\
& \times\left[1+b_{1}^{+}\left(z\left(q^{2}\right)-z(0)\right)+b_{2}^{+} O\left(z^{2}\right)+b_{3}^{+} O\left(z^{3}\right)\right] \\
& z \equiv z\left(q^{2}\right):
\end{aligned}
$$

- conformal map from q^{2} to complex z plane
- automatically fulfills analyticity constraints fitting 3 parameters:
- normalization $f_{+}^{B \pi}(0)$
- two shape parameters b_{1}^{+}, b_{2}^{+}
- b_{3}^{+}fixed from threshold behaviour parametrization follows [Bourrely,Caprini,Lellouch 0807.2722]

Extracting $V_{u b}$ from $B \rightarrow \pi^{+} \mu \bar{\nu}$

- 2010 data: Belle+BaBar, 6 bins $q^{2} \leq 12 \mathrm{GeV}^{2}$
- 2010 data vs inclusive: barely compatible @ 99\% prob.
- 2013 data: Belle+BaBar, 6 bins $q^{2} \leq 12 \mathrm{GeV}^{2}$
- 2013 data increases tension
- 1D marginals:
$-\left|V_{u b}\right|^{2010}=\left(3.43_{-0.23}^{+0.27}\right) \cdot 10^{-3}$
$-\left|V_{u b}\right|^{2013}=\left(3.32_{-0.22}^{+0.26}\right) \cdot 10^{-3}$

68\%, 95\%, 99\% prob. contours for 2010 data
$68 \%, 95 \%, 99 \%$ prob. contours for 2013 data

University of
Zurich ${ }^{\text {²H }}$
Physik Institut

$\bar{B} \rightarrow\{\rho, \omega\}$ Form Factors from LCSR
 [Bharucha,Straub,Zwicky 1503.05534]

- update $B_{(s)} \rightarrow V$ form factor results, $V=\rho, \omega, K^{*}, \phi$
- changes to previous analyses reduce parametric uncertainties
- extensive use of equations of motion to reduce number of threshold parameters
- correlate threshold and Borel parameters for f_{B} and form factor sum rules
- z-series fit to LCSR (and LCSR+Lattice) result
- form factors at $q^{2}=0$ and shape parameters
- find sizeable correlations among fit parameters
- numeric results available as ancillary files

Extracting $V_{u b}$ from $B \rightarrow\{\rho, \omega\} \mu \bar{\nu}$

- use of various bins, $\left|V_{u b}\right|$ available for each bin
- from $B \rightarrow \rho \ell \nu$:
- BaBar, $q^{2}<7 \mathrm{GeV}^{2},\left|V_{u b}\right|=(2.54 \pm 0.33) \times 10^{-3}$
- Belle, $q^{2}<8 \mathrm{GeV}^{2},\left|V_{u b}\right|=(3.45 \pm 0.27) \times 10^{-3}$
- Belle, $q^{2}<12 \mathrm{GeV}^{2},\left|V_{u b}\right|=(3.29 \pm 0.22) \times 10^{-3}$
- from $B \rightarrow \omega \ell \nu$:
- BaBar, $q^{2}<8 \mathrm{GeV}^{2},\left|V_{u b}\right|=(3.33 \pm 0.41) \times 10^{-3}$
- BaBar, $q^{2}<12 \mathrm{GeV}^{2},\left|V_{u b}\right|=(3.31 \pm 0.36) \times 10^{-3}$
- Belle, $q^{2}<7 \mathrm{GeV}^{2},\left|V_{u b}\right|=(2.54 \pm 0.42) \times 10^{-3}$
- my naive weighted average: $\left|V_{u b}\right|=(3.04 \pm 0.15) \times 10^{-3}$

Physik Institut

Comparison of Non-Lattice $\left|V_{u b}\right|$

University of
Zurich ${ }^{\text {Vn }}$
Physik Institut

New Physics Searches

Search for NP in Semileptonic $b \rightarrow u$ Transitions

Effective Field Theory
Modify the effective $b \rightarrow u \ell \nu$ vertex by adding a different chirality in the hadronic current:

$$
\mathcal{L}_{b \rightarrow u}^{\text {eff }}=\frac{\mathcal{G}_{\mathrm{F}} V_{u b}^{\text {eff }}}{\sqrt{2}}\left[\mathcal{C}_{V, L} \mathcal{O}_{V, L}+\mathcal{C}_{V, R} \mathcal{O}_{V, R}\right]
$$

where

$$
\mathcal{O}_{V, R}=\left[\bar{u}(x) \gamma^{\mu}\left(1+\gamma_{5}\right) b(x)\right]\left[\bar{\ell}(x) \gamma_{\mu}\left(1-\gamma_{5}\right) \nu(x)\right]
$$

Consequently:

$$
\begin{aligned}
& -\left|V_{u b}^{B \rightarrow \tau \nu}\right|^{2} \rightarrow\left|V_{u b}^{\text {eff }}\right|^{2}\left|\mathcal{C}_{V, L}-\mathcal{C}_{V, R}\right|^{2} \\
& -\left|V_{u b}^{B \rightarrow \pi \ell \nu}\right|^{2} \rightarrow\left|V_{u b}^{\text {eff }}\right|^{2}\left|\mathcal{C}_{V, L}+\mathcal{C}_{V, R}\right|^{2} \\
& -\left|V_{u b}^{\text {incl. }}\right|^{2} \rightarrow\left|V_{u b}^{\text {eff }}\right|^{2}\left(\left|\mathcal{C}_{V, L}\right|^{2}+\left|\mathcal{C}_{V, R}\right|^{2}\right)
\end{aligned}
$$

University of

Zurich ${ }^{\text {VH }}$
Physik Institut

Strategy

- fit $\mathcal{C}_{V, L}$ and $\mathcal{C}_{V, R}$ from data ($B \rightarrow \tau \bar{\nu}, B \rightarrow \pi \mu \nu, B \rightarrow X_{u} \mu \nu$)
- choose global phase as phase of $V_{u b}^{\text {eff }} \cdot \mathcal{C}_{V, L}$
$-\mathcal{C}_{V, L}$ is real-valued in the fit
- introduce nuisance parameters for exclusive decays, using informative priors
- $B^{-} \rightarrow \tau^{-} \bar{\nu}: B$ decay constant f_{B} from 2ptSRs
[Gelhausen,Khodjamirian,Pivovarov,Rosenthal 1404.0891]
- $\bar{B}^{0} \rightarrow \pi^{+} \mu^{-} \bar{\nu}:$ form factor $f_{+}\left(q^{2}\right)$ from LCSRs
[Imsong,Khodjamirian,Mannel,DvD 1409.7816]
- use several fit scenarios and perform statistical comparison

1 no right-handed currents: $\mathcal{C}_{V, R}=0$, fit $\mathcal{C}_{V, L}$

- equivalent to determination of $\left|V_{u b}\right|=\left|V_{u b}^{\text {eff }} \mathcal{C}_{V, L}\right|$

2 real-valued right-handed currents
3 complex-valued right-handed currents

University of

Zurich ${ }^{\text {VIH }}$
Physik Institut

Results

Scenario 1

- find $\left|\mathcal{C}_{V, L}\right|=1.02 \pm 0.05$ at 68% probability
- corresponds to $\left|V_{u b}\right|=(4.07 \pm 0.20) \cdot 10^{-3}$ at 68% prob.
$-\chi^{2}=18.54$ for 28 degrees of freedom
- excellent fit with p value of 91%
- however: form factor pull does not enter χ^{2}
- 3 form factor parameters with pull of $\sim 3 \sigma$

Scenario 2 and 3

- best fit point: $C_{V, L}=1.025, \operatorname{Re}\left(C_{V, R}\right)=-0.079+i 0$
- χ^{2} increases to 20.47 for 27 (26) degrees of freedom
- still very good fit with p value of 81% (77%)
$-\mathcal{C}_{V, R}$ compensates need to adjust form factor (FF pull down to $\sim 2 \sigma$)
- looses against scenario 1 in posterior odds with 1 : 27.8 (1:100)

University of
Zurich ${ }^{\text {VIH }}$
Physik Institut
Comments on $V_{u b}$ from $\Lambda_{b} \rightarrow p \ell \bar{\nu}$

University of
Zurich ${ }^{\text {VIH }}$
Physik Institut

The LHCb measurement of $V_{u b}$ in $\Lambda_{b} \rightarrow p \ell \bar{\nu}$ is the first measurement of $V_{u b}$ in a baryon decay.

The different spin structure between meson and baryon decays gives rise to complementary information on the Wilson coefficients $\mathcal{C}_{V, L(R)}$.
[LHCb 1504.01568]

But: The $V_{u b}$ extraction relies heavily on the normalization to $\Lambda_{b} \rightarrow \Lambda_{c} \mu \bar{\nu}$. In fact, LHCb extracts the ratio $V_{u b} / V_{c b}$. Needs accurate and precise predictions of the ratio of (binned) hadronic matrix elements, currently only available from lattice QCD

However: We can test the lattice results by applying continuum QCD methods.

Testing the $\Lambda_{b} \rightarrow \Lambda_{c}$ Form Factors

Inclusive bound from 2pt correlation function

$$
T_{\Gamma}(\varepsilon) \sim \int \mathrm{d}^{4} x e^{i(v \cdot x) \varepsilon}\left\langle\Lambda_{b}\right| \mathcal{T}\left\{\bar{b}_{v}(x) \Gamma c_{v}(x), \bar{c}_{v}(0)\left\ulcorner b_{v}(0)\right\}\left|\Lambda_{b}\right\rangle\right.
$$

- v : velocity of the b and c quark in the Λ_{b} rest frame
- ε : excitation energy of the intermediate state above $M_{\wedge_{c}}$

Contour integral of $T(\varepsilon)$ encompasses all contributions to the imaginary part of the forward matrix element:

- elastic
- all inelastic
upper bound on the sum of exclusive form factors at the zero recoil point.

Inelastic Contributions at Zero-Recoil

- $X_{\text {inel }} \equiv$ difference between inclusive bound and lattice values at zero recoil
- draw samples from predictive distributions
- expect $X>0$
- $X=F, G$, for vector and axialvector currents, respectively

For both currents we find that the lattice results for the $\Lambda_{b} \rightarrow \Lambda_{c}$ transitions exceed the inclusive bounds at 55% probability.

But: $\left\langle X_{\text {inel }}\right\rangle$ of the same size as leading OPE uncertainty $O\left(\alpha_{s} / m^{2}\right)$.

University of

Zurich ${ }^{\text {UzH }}$
Physik Institut
Conclusion

Conclusion

- tension between $\left|V_{u b}\right|^{\text {incl }}$ and $\left|V_{u b}\right|^{\text {excl }}$ persists
- progress in QCD sum rules progress cannot alleviate the tension
- the tension could be due to New Physics
- global analysis suggests that right-handed currents alone cannot explain the tension
- LHCb's measurement of $\Lambda_{b} \rightarrow p \mu^{-} \bar{\nu}$ important for $V_{u b} / V_{c b}$ determination; complementary probe of NP
- however: zero-recoil sum rules suggest that $\Lambda_{b} \rightarrow \Lambda_{c}$ lattice form factors are slightly too large

Imkong Sentitemsu Imsong
\dagger October 30th 2015

