

Non-lattice perspective on *V*_{*ub*} **and NP Searches**

Danny van Dyk Universität Zürich

Implications of LHCb measurements and future prospects November 4th, 2015

The Tension between V_{ub} Determinations

However, the determinations of $|V_{ub}|$ from the individual decay channels do not agree well: [HFAG 2014, 1412.7515]

 $V_{ub}^{B \to \pi \mu \nu} = (3.28 \pm 0.29) \times 10^{-3}$ $V_{ub}^{B \to X_{u} \mu \nu} = (4.41 \pm 0.21) \times 10^{-3}$

What can cause the observed tension? (Focussing only on theory problems)

- 1. we do not understand the inclusive rate well enough
- 2. we do not understand the exclusive hadronic matrix elements well enough
- 3. new physics contributions affect the inclusive and exclusive rates differently

This talk: focus on options 2 and 3!

Updates of QCD Sum Rules

QCD Sum Rules in a Nutshell

f_B from a 2-point QCD Sum Rule

$$F(p^{2}) = \int \frac{d^{4}x}{(2\pi)^{4}} e^{-ip \cdot x} \langle 0 | \mathcal{T} \{ j_{5}(x), j_{5}(0) \} | 0 \rangle$$

$$F^{\mathsf{OPE}}(p^{2}) = \int_{m_{b}^{2}}^{\infty} \frac{\rho^{\mathsf{OPE}}(s) \mathrm{d}s}{s - p^{2}} \qquad F^{\mathsf{had}}(p^{2}) = \frac{f_{B}^{2} M_{B}^{2}}{M_{B}^{2} - p^{2}} + \int_{(M_{B} + 2M_{\pi})^{2}}^{\infty} \frac{\rho(s) \mathrm{d}s}{s - p^{2}}$$

Apply Borel transform $p^2 \rightarrow M^2$, and introduce some threshold $s_0 > m_b^2$ so that

$$f_B^2 = rac{1}{M_B^2} \int_{m_b^2}^{s_0} e^{-rac{s-M_B^2}{M^2}}
ho^{\mathsf{OPE}}(s) \mathrm{d}s$$

Then determine s_0 from M^2 independence of f_B^2 .

Decay Constants

[Gelhausen,Khodjamirian,Pivovarov,Rosenthal 1404.5891]

- updates all heavy-meson decay constants ($B_{(s)}$ and $D_{(s)}$ systems)
- first study to take impact of radially-excited states into account

$$ho(s) \supset rac{M_{B'}\Gamma_{B'}}{(s-M_{B'}^2)^2+M_{B'}^2\Gamma_{B'}^2}M_{B'}^2f_{B'}^2$$

for radially-excited B' meson with $J^P = 0^-$

- excerpt: results for f_B
 - $f_B = 207^{+17}_{-9}$ MeV w/o radially-excitated state $f_B = 200^{+18}_{-10}$ MeV w/ radially-excitated state

compatible with FLAG average ($N_f = 2 + 1$) at less than 1σ

Extracting V_{ub} from $B \rightarrow \tau \nu$

Result for $|V_{ub}|$ [my own fit using 1404.5891]

- result $|V_{ub}^{B \to \tau \nu}| = (3.75^{+0.45}_{-0.45}) \cdot 10^{-3}$
- goodness of fit χ^2 /d.o.f. = 4.16/3 good fit, with p value of 0.24

QCD Sum Rules in a Nutshell

 $f^{B\pi}_+(q^2)$ from a Light-Cone QCD Sum Rule

$$F(q^{2}, (p+q)^{2}) = \int \frac{d^{4}x}{(2\pi)^{4}} e^{-iq \cdot x} \langle \pi(p) | \mathcal{T} \{ J_{\mu}(x), j_{5}(0) \} | 0 \rangle \Big|_{\rho_{\mu} \text{ coeff. only}}$$

$$F^{\mathsf{OPE}}(q^{2}, (p+q)^{2}) = \int_{m_{b}^{2}}^{\infty} \frac{\rho^{\mathsf{OPE}}(q^{2}, s) \mathrm{d}s}{s - (p+q)^{2}}$$

$$F^{\mathsf{had}}(q^{2}, (p+q)^{2}) = \frac{f_{B}f_{+}^{\beta\pi}(q^{2})M_{B}^{2}}{M_{B}^{2} - (p+q)^{2}} + \int^{\infty} \frac{\rho(q^{2}, s) \mathrm{d}s}{s - (p+q)^{2}}$$

Final sum rule after Borel transformation

$$f_{+}^{B\pi} = rac{1}{f_B M_B^2} \int_{m_b^2}^{s_0} e^{-rac{s-M_B^2}{M^2}}
ho^{\mathsf{OPE}}(s) \mathrm{d}s$$

$B \rightarrow \pi$ Form Factor from LCSR

LCSR Results

- Bayesian framework with gaussian prior for Borel parameters
 - constrain thresholds from first moment of sum rule
 - peaking posterior for thresholds
- posterior-predictive distributions for the form factor yield
 - $f_+(q^2)$, 1st and 2nd derivatives w.r.t. q^2
 - evaluated at two q^2 points: $q^2 = 0$ and $q^2 = 10 \text{ GeV}^2$
 - 6-by-6 correlation matrix largest corr.: $\rho[f_+(0), f_+(10 \text{ GeV}^2)] = 0.925$
 - parametric uncertainties reduced to $\sim 8\%$

[Imsong,Khodjamirian,Mannel,DvD 1409.7816]

$B \rightarrow \pi$ Form Factor from LCSR

Fit to z Series

$$f_{+}^{B\pi}(q^{2}) = \frac{f_{+}^{B\pi}(0)}{1 - q^{2}/M_{B^{*}}^{2}} \times \left[1 + b_{1}^{+}(z(q^{2}) - z(0)) + b_{2}^{+}O\left(z^{2}\right) + b_{3}^{+}O\left(z^{3}\right)\right]$$

 $z \equiv z(q^2)$:

- conformal map from q^2 to complex z plane
- automatically fulfills analyticity constraints

fitting 3 parameters:

- normalization $f_{+}^{B\pi}(0)$
- two shape parameters b_1^+ , b_2^+
- b⁺₃ fixed from threshold behaviour parametrization follows [Bourrely,Caprini,Lellouch 0807.2722]

[Imsong,Khodjamirian,Mannel,DvD 1409.7816]

Extracting V_{ub} from $B \rightarrow \pi^+ \mu \overline{\nu}$

[Imsong,Khodjamirian,Mannel,DvD 1409.7816]

- 2010 data: Belle+BaBar, 6 bins $q^2 \le 12 \,\text{GeV}^2$
- 2010 data vs inclusive: barely compatible @ 99% prob.
- 2013 data: Belle+BaBar, 6 bins $q^2 \le 12 \,\text{GeV}^2$
- 2013 data increases tension
- 1D marginals:
 - $\begin{array}{l} \ |V_{ub}|^{2010} = (3.43^{+0.27}_{-0.23}) \cdot 10^{-3} \\ \ |V_{ub}|^{2013} = (3.32^{+0.26}_{-0.22}) \cdot 10^{-3} \end{array}$

68%, 95%, 99% prob. contours for 2010 data 68%, 95%, 99% prob. contours for 2013 data central value and 68% CL interval for GGOU [HFAG 2014, 1412.7215] 04.11.2015 Non-lattice V_{ub}

$\overline{B} o \{ ho,\,\omega\}$ Form Factors from LCSR [Bharucha,Straub,Zwicky 1503.05534]

- update $B_{(s)} \rightarrow V$ form factor results, $V = \rho, \omega, K^*, \phi$
- changes to previous analyses reduce parametric uncertainties
 - extensive use of equations of motion to reduce number of threshold parameters
 - correlate threshold and Borel parameters for f_B and form factor sum rules
- z-series fit to LCSR (and LCSR+Lattice) result
 - form factors at $q^2 = 0$ and shape parameters
 - find sizeable correlations among fit parameters
 - numeric results available as ancillary files

Extracting V_{ub} from $B \rightarrow \{\rho, \omega\} \mu \overline{\nu}$

[Bharucha,Straub,Zwicky 1503.05534]

- use of various bins, $|V_{ub}|$ available for each bin

- from
$$B \rightarrow \rho \ell \nu$$
:

- BaBar,
$$q^2 < 7\,{
m GeV^2}, |V_{ub}| = (2.54\pm0.33) imes10^{-3}$$

- Belle, $q^2 < 8 \, {
 m GeV}^2$, $|V_{ub}| = (3.45 \pm 0.27) imes 10^{-3}$
- Belle, $q^2 < 12 \, {
 m GeV}^2, \, |V_{ub}| = (3.29 \pm 0.22) imes 10^{-3}$

- from $B \rightarrow \omega \ell \nu$:

- BaBar,
$$q^2 < 8\,{
m GeV}^2$$
, $|V_{ub}| = (3.33\pm0.41) imes10^{-3}$

- BaBar, $q^2 < 12 \,\text{GeV}^2$, $|V_{ub}| = (3.31 \pm 0.36) \times 10^{-3}$
- Belle, $q^2 < 7 \, {
 m GeV^2}, \, |V_{ub}| = (2.54 \pm 0.42) imes 10^{-3}$
- my naive weighted average: $|V_{ub}| = (3.04 \pm 0.15) \times 10^{-3}$

Comparison of Non-Lattice |V_{ub}|

New Physics Searches

Search for NP in Semileptonic $b \rightarrow u$ Transitions

Effective Field Theory

Modify the effective $b \to u \ell \nu$ vertex by adding a different chirality in the hadronic current:

$$\mathcal{L}_{b \to u}^{\text{eff}} = \frac{G_{\text{F}} V_{ub}^{\text{eff}}}{\sqrt{2}} \left[\mathcal{C}_{V,L} \mathcal{O}_{V,L} + \mathcal{C}_{V,R} \mathcal{O}_{V,R} \right]$$

where

$$\mathcal{O}_{V,R} = \left[\overline{u}(x)\gamma^{\mu}(1+\gamma_5)b(x)\right]\left[\overline{\ell}(x)\gamma_{\mu}(1-\gamma_5)\nu(x)\right]$$

Consequently:

$$\begin{split} & - \ |V_{ub}^{B \to \tau\nu}|^2 \to |V_{ub}^{\text{eff}}|^2 \left|\mathcal{C}_{V,L} - \mathcal{C}_{V,R}\right|^2 \\ & - \ |V_{ub}^{B \to \pi\ell\nu}|^2 \to |V_{ub}^{\text{eff}}|^2 \left|\mathcal{C}_{V,L} + \mathcal{C}_{V,R}\right|^2 \\ & - \ |V_{ub}^{\text{incl.}}|^2 \to |V_{ub}^{\text{eff}}|^2 \left(|\mathcal{C}_{V,L}|^2 + |\mathcal{C}_{V,R}|^2\right) \end{split}$$

Strategy

[Feldmann, Müller, DvD 1503.09063]

- fit $C_{V,L}$ and $C_{V,R}$ from data ($B \rightarrow \tau \overline{\nu}, B \rightarrow \pi \mu \nu, B \rightarrow X_u \mu \nu$)
 - choose global phase as phase of $V_{ub}^{eff} \cdot C_{V,L}$
 - $C_{V,L}$ is real-valued in the fit
- introduce nuisance parameters for exclusive decays, using informative priors
 - $B^- \rightarrow \tau^- \overline{\nu}$: *B* decay constant *f_B* from 2ptSRs

[Gelhausen,Khodjamirian,Pivovarov,Rosenthal 1404.0891]

 $-\overline{B}^0 \to \pi^+ \mu^- \overline{\nu}$: form factor $f_+(q^2)$ from LCSRs

[Imsong,Khodjamirian,Mannel,DvD 1409.7816]

- use several fit scenarios and perform statistical comparison
 - 1 no right-handed currents: $C_{V,R} = 0$, fit $C_{V,L}$
 - equivalent to determination of $|V_{ub}| = |V_{ub}^{eff}C_{V,L}|$
 - 2 real-valued right-handed currents
 - 3 complex-valued right-handed currents

Results

[Feldmann, Müller, DvD 1503.09063]

Scenario 1

- find $|C_{VI}| = 1.02 \pm 0.05$ at 68% probability
 - corresponds to $|V_{ub}| = (4.07 \pm 0.20) \cdot 10^{-3}$ at 68% prob.
- $\chi^2 =$ 18.54 for 28 degrees of freedom
 - excellent fit with p value of 91%
- however: form factor pull does not enter χ^2
 - 3 form factor parameters with pull of $\sim 3\sigma$

Scenario 2 and 3

- best fit point: $C_{V,L} = 1.025$, Re $(C_{V,R}) = -0.079 + i0$
- $-\chi^2$ increases to 20.47 for 27 (26) degrees of freedom
 - still very good fit with p value of 81% (77%)
- $C_{V,R}$ compensates need to adjust form factor (FF pull down to $\sim 2\sigma$)
- looses against scenario 1 in posterior odds with 1 : 27.8 (1 : 100)

Comments on V_{ub} from $\Lambda_b \rightarrow \rho \ell \overline{\nu}$

The LHCb measurement of V_{ub} in $\Lambda_b \rightarrow p \ell \overline{\nu}$ is the first measurement of V_{ub} in a baryon decay.

The different spin structure between meson and baryon decays gives rise to complementary information on the Wilson coefficients $C_{V,L(R)}$.

But: The V_{ub} extraction relies heavily on the normalization to $\Lambda_b \rightarrow \Lambda_c \mu \overline{\nu}$. In fact, LHCb extracts the ratio V_{ub}/V_{cb} . Needs accurate and precise predictions of the ratio of (binned) hadronic matrix elements, currently only available from lattice QCD

However: We can test the lattice results by applying continuum QCD methods.

[Detmold,Lehner,Meinel 1503.01421]

Testing the $\Lambda_b \to \Lambda_c$ Form Factors

[T. Mannel, DvD 1506.08780]

Inclusive bound from 2pt correlation function

$$\mathcal{T}_{\Gamma}(arepsilon)\sim\int\mathrm{d}^{4}x\,e^{i(v\cdot x)arepsilon}\langle\Lambda_{b}|\mathcal{T}\left\{\overline{b}_{v}(x)\Gamma c_{v}(x),\overline{c}_{v}(0)\Gamma b_{v}(0)
ight\}|\Lambda_{b}
angle$$

- v: velocity of the b and c quark in the Λ_b rest frame
- ε : excitation energy of the intermediate state above M_{Λ_c}

Contour integral of $T(\varepsilon)$ encompasses *all* contributions to the imaginary part of the forward matrix element:

- elastic
- all inelastic

upper bound on the sum of exclusive form factors at the zero recoil point.

Inelastic Contributions at Zero-Recoil

- $X_{inel} \equiv$ difference between inclusive bound and lattice values at zero recoil
 - draw samples from predictive distributions
 - expect X > 0
- X = F, G, for vector and axialvector currents, respectively

For both currents we find that the lattice results for the $\Lambda_b \rightarrow \Lambda_c$ transitions exceed the inclusive bounds at 55% probability.

But: $\langle X_{\text{inel}} \rangle$ of the same size as leading OPE uncertainty $O(\alpha_s/m^2)$.

Conclusion

Conclusion

- tension between $|V_{ub}|^{incl}$ and $|V_{ub}|^{excl}$ persists
 - progress in QCD sum rules progress cannot alleviate the tension
- the tension could be due to New Physics
 - global analysis suggests that right-handed currents alone cannot explain the tension
- LHCb's measurement of $\Lambda_b \rightarrow p\mu^-\overline{\nu}$ important for V_{ub}/V_{cb} determination; complementary probe of NP
 - however: zero-recoil sum rules suggest that $\Lambda_b\to\Lambda_c$ lattice form factors are slightly too large

In Memoriam

Imkong Sentitemsu Imsong † October 30th 2015