Bayesian Constraints on Wilson Coefficients from Radiative and (Semi)leptonic $b \rightarrow s$ Decays

Danny van Dyk in collaboration with Frederik Beaujean and Christoph Bobeth

based on arxiv:1310.2478

Implications of LHCb measurements and future prospects October 15th 2013

Theor. Physik 1

D. van Dyk (U. Siegen)

DFG FOR 1873

1 / 14

15.10.2013

Effective Field Theory for $b \rightarrow s \ell^+ \ell^-$ FCNCs

Flavor Changing Neutral Current (FCNC)

- expand amplitudes in $G_{
 m F} \sim 1/M_W^2$ (OPE)
- operators (matrix elem. below $\mu_b \simeq m_b$)

 $\mathcal{O}_i \equiv \left[\bar{s} \Gamma_i b \right] \left[\bar{\ell} \Gamma_i' \ell \right]$

• Wilson coefficients (above $\mu_b \simeq m_b$)

 $C_i \equiv C_i(M_W, M_Z, m_t, \dots)$

• use $C_i = C_i(\mu_b = 4.2 \text{GeV})$

Effective Hamiltonian

$$\mathcal{H} = -\frac{4G_{\rm F}}{\sqrt{2}}\frac{\alpha_{\rm e}}{4\pi} \Big[V_{tb}V_{ts}^* \sum_i \frac{\mathcal{C}_i\mathcal{O}_i}{\mathcal{O}_i} + O\left(V_{ub}V_{us}^*\right) \Big] + \text{h.c.}$$

D. van Dyk (U. Siegen)

Effective Field Theory for $b \rightarrow s \ell^+ \ell^-$ FCNCs

Flavor Changing Neutral Current (FCNC)

- expand amplitudes in ${\it G}_{
 m F} \sim 1/M_W^2$ (OPE)
- operators (matrix elem. below $\mu_b \simeq m_b$)

 $\mathcal{O}_i \equiv \left[\bar{s}\Gamma_i b\right] \left[\bar{\ell}\Gamma_i' \ell\right]$

• Wilson coefficients (above $\mu_b \simeq m_b$)

 $C_i \equiv C_i(M_W, M_Z, m_t, \dots)$

• use $C_i = C_i (\mu_b = 4.2 \text{GeV})$

Operators

$$\mathcal{O}_{7(')} = [\bar{s}\sigma^{\mu\nu}P_{R(L)}b]F_{\mu\nu}$$

$$\mathcal{O}_{9(')} = [\bar{s}\gamma^{\mu}P_{L(R)}b][\bar{\ell}\gamma_{\mu}\ell]$$
$$\mathcal{O}_{10(')} = [\bar{s}\gamma^{\mu}P_{L(R)}b][\bar{\ell}\gamma_{\mu}\gamma_{5}\ell]$$

D. van Dyk (U. Siegen)

Effective Field Theory for $b \rightarrow s \ell^+ \ell^-$ FCNCs

Flavor Changing Neutral Current (FCNC)

- expand amplitudes in ${\it G}_{
 m F} \sim 1/M_W^2$ (OPE)
- operators (matrix elem. below $\mu_b \simeq m_b$)

 $\mathcal{O}_i \equiv \left[\bar{s}\Gamma_i b\right] \left[\bar{\ell}\Gamma_i' \ell\right]$

• Wilson coefficients (above $\mu_b \simeq m_b$)

 $C_i \equiv C_i(M_W, M_Z, m_t, \dots)$

• use $C_i = C_i(\mu_b = 4.2 \text{GeV})$

Decay Modes

$$\begin{array}{lll} B \to K^* \ell^+ \ell^- & B_s \to \mu^+ \mu^- & B \to K \ell^+ \ell^- \\ B \to K^* \gamma & B \to X_s \ell^+ \ell^- & B \to X_s \gamma \end{array}$$

D. van Dyk (U. Siegen)

 $|\Delta B| = |\Delta S| = 1$ Wilson Coefficients

Definition of model-independent for the purpose of this work:

Basis of Operators \mathcal{O}_i

- include as many \mathcal{O}_i beyond SM as needed/as few as possible
- balancing act, test statistically if choice of basis describes data well!

Wilson Coefficients C_i

- treat C_i as uncorrelated, generalized couplings
- constrain their values from data
- model builders: confront new physics models with constraints

SM-like Coefficients

• fix $\mathcal{C}_{7,9,10}$ to SM values (NNLL)

Chirality-flipped Coefficients

• fix
$$\mathcal{C}_{7'}=m_s/m_b\,\mathcal{C}_7$$
, fix $\mathcal{C}_{9',10'}=0$

Nuisance Parameters

- fit nuisance parameters
- informative priors
 - ► form factors: light-cone sum rules [Khodjamirian/Mannel/Pivovarov/Wang '10]
 - power corrections: power-counting assumptions
 - CKM: tree-level fit [UTfit]
 - quark masses [PDG]

Fit Scenarios: SM Basis

SM-like Coefficients

• fit $\mathcal{C}_{7,9,10}$

Chirality-flipped Coefficients

• fix
$$\mathcal{C}_{7'}=m_s/m_b\,\mathcal{C}_7$$
, fix $\mathcal{C}_{9',10'}=0$

Nuisance Parameters

- fit nuisance parameters
- informative priors
 - ▶ form factors: light-cone sum rules [Khodjamirian/Mannel/Pivovarov/Wang '10]
 - ▶ power corrections: power-counting assumptions
 - CKM: tree-level fit [UTfit]
 - quark masses [PDG]

SM-like Coefficients

• fit $\mathcal{C}_{7,9,10}$

Chirality-flipped Coefficients

• fit $\mathcal{C}_{7',9',10'}$

Nuisance Parameters

- fit nuisance parameters
- informative priors
 - ► form factors: light-cone sum rules [Khodjamirian/Mannel/Pivovarov/Wang '10]
 - power corrections: power-counting assumptions
 - CKM: tree-level fit [UTfit]
 - quark masses [PDG]

Wilson Coefficients										
	C _{7(')}	C _{9(')}	C _{10(')}							
$B_s o \mu^+ \mu^-$	_	_	\checkmark							
$B \to X_s \gamma$	\checkmark	-	_							
$B \to X_s \ell^+ \ell^-$	\checkmark	\checkmark	\checkmark							
$B ightarrow K^* \gamma$	\checkmark	-	_							
$B \to K^* \ell^+ \ell^-$	\checkmark	\checkmark	\checkmark	12 CP-avg. angular observables						
$B o K \ell^+ \ell^-$	\checkmark	\checkmark	\checkmark	3 CP-avg. angular observables						

Form Factors

- interplay between $B \to X_s\{\gamma, \ell^+\ell^-\}$ and $B \to K^*\{\gamma, \ell^+\ell^-\}$
- some $B \to K^* \ell^+ \ell^-$ obs. form-factor insensitive by construction
- some $B \to K^* \ell^+ \ell^-$ obs. dominantly sensitive to form factor ratios

Measurements Entering Analysis

 $B \to K^* \gamma$ $B
ightarrow K^* \ell^+ \ell^- q^2 \in [1,6]$ GeV², $q^2 \ge M_{qh'}^2$ • \mathcal{B} , $S_{K^*\gamma}$, $C_{K^*\gamma}$ • \mathcal{B} , A_{FB} , F_{I} , A_{T}^2 BaBar, Belle, CLEO • **new**: A_{T}^{re} , P_{A}' , P_{5}' , P_{6}' ATLAS, BaBar, Belle, CDF, CMS. LHCb see also talk by N. Mahmoudi $B
ightarrow K \ell^+ \ell^ q^2 \in [1,6]$ GeV 2 , $q^2 \ge M_{ab'}^2$ $B \to X_s \gamma$ $E_{\min}^{\gamma} = 1.8 \, \mathrm{GeV}$ • B • B BaBar, Belle, CLEO BaBar, Belle, CDF, LHCb $B_s \rightarrow \mu^+ \mu^ B \to X_{\rm s} \ell^+ \ell^$ $q^2 \in [1, 6]$ **GeV**² • $\int d\tau \mathcal{B}(\tau)$ • B • CMS. LHCb BaBar, Belle

 $|\Delta B| = |\Delta S| = 1$ Wilson Coefficients

Further Theory Constraints

Form Factors from Lattice QCD (LQCD)

- $B \rightarrow K$ form factors available from LQCD
 - data only at high q^2 : 17 23 GeV²
 - no data points given
- reproduce 3 data points from z-parametrization
 - ▶ $q^2 \in \{17, 20, 23\} \text{ GeV}^2$
 - use as constraint, incl. covariance matrix

$B \rightarrow K^*$ Form Factor (FF) Relation at $q^2 = 0$

- FF $V, A_1 \propto \xi_\perp + \dots$ [Charles et al. hep-ph/9901378]
 - ▶ no α_s corrections [Burdmann/Hiller hep-ph/0011266, Beneke/Feldmann hep-ph/0008255]
 - Large Energy Limit: $V(0) = (1.33 \pm 0.4) \times A_1(0)$
- LCSR constraint: $\xi_{\parallel}(0) = 0.10^{+0.03}_{-0.02}$, to avoid $\xi_{\parallel}(q^2) \propto A_0(q^2) < 0$.
- see also FF fits by [Hambrock/Hiller/Schacht/Zwicky 1308.4379]

however: further SM prediction exist, much larger uncertainty (JC)
 [Jäger/Camalich 1212.2263]

• our take on SM prediction $\langle P_5' \rangle_{[1,6]} = -0.34^{+0.09}_{-0.08}$ (BBvD) see also backups for $P_{4,6}'$ and [2, 4.3] bins

difference: treatment of unknown power corrections (form factor corrections, *c̄c* resonances)

JC BBvD

Results SM(*v***-only)**

Pull Values at Best-Fit Point

largest pulls

 $-3.4\sigma \ \langle F_L
angle_{[1,6]}$, BaBar 2012

 $-2.6\sigma~\langle F_L
angle_{[1,6]}$, ATLAS 2013

 $-2.4\sigma~\langle P_4'
angle_{ ext{[14.18,16]}}$, LHCb 2013

+2.5 σ $\langle \mathcal{B} \rangle_{[16,19.21]}$, Belle 2009 +2.2 σ $\langle A_{FB} \rangle_{[16,19]}$, ATLAS 2013 +2.1 σ $\langle P'_5 \rangle_{[1,6]}$, LHCb 2013

p Values

- *p* value 0.15
- taking out ATLAS, BaBar $\langle F_L \rangle_{[1,6]}$: p value increases to 0.71

Summary

- good fit, no New Physics signal
- we find power corrections on top of QCDF results at large recoil

D. van Dyk (U. Siegen)

 $|\Delta B| = |\Delta S| = 1$ Wilson Coefficients

Parametrization of Power Corrections @ Large Recoil

• six parameters $\zeta_{\chi}^{L(R)}$ for the [1,6] bin

$$egin{aligned} &\mathcal{A}_{\chi}^{L(R)}(q^2)\mapsto \zeta_{\chi}^{L(R)}\mathcal{A}_{\chi}^{L(R)}(q^2)\,,\quad \chi=\perp,\parallel,0 \end{aligned}$$

• on top of QCDF correction to transversity amplitudes

improved understanding of power corrections desirable

D. van Dyk (U. Siegen)

 $|\Delta B| = |\Delta S| = 1$ Wilson Coefficients

Results (SM Basis)

 \bullet : Standard Model, \times : best-fit point

(light-) red: 68% CL (95% CL) for full dataset

blue solid (blue dashed): 68% CL (95% CL) for selection

post HEP'13 (selection)

- with $B \to X_s \{\gamma, \ell^+ \ell^-\}$
- $B_s \rightarrow \mu^+ \mu^-$ from LHCb and CMS
- same data as

[Descotes-Genon/Matias/Virto 1307.5683] exclusive decays limited:

- ▶ only $B \to K^* \ell^+ \ell^-!$
- only LHCb data!
- ▶ only $q^2 \in [1, 6]$ GeV²
- best-fit point similar to

[Descotes-Genon et al. 1307.5683]

▶ less tension, only $\lesssim 2\sigma$ ▶ $C_9 - C_9^{SM} \simeq -1.3 \pm 0.5$

Results (SM Basis)

♦: Standard Model, ×: best-fit point

(light-) red: 68% CL (95% CL) for full dataset

blue solid (blue dashed): 68% CL (95% CL) for selection

post HEP'13 (full)

- SM-like uncertainty reduced by ~ 2 compared to 2012
- SM at the border of 1σ
- flipped-sign barely allowed at 1σ (26% of evidence)
- cannot confirm NP findings
 - ▶ in (C_7, C_9)

[Descotes-Genon et al. 1307.5683]

- $\zeta_{\chi}^{L(R)}$ as in SM(ν -only)
- p value: 0.13 (@SM-like sol.)

Results (SM+SM' Basis)

♦: Standard Model, ×: best-fit points,

(light-) red: 68% CL (95% CL) for full dataset

- four solutions A' through D'
 - \blacktriangleright A' = SM like, 39% of ev.
 - ▶ B' = flipped signs, 41% of ev.
 - \triangleright C', D' suppressed: 5% and 15% of evidence

- for A' (SM-like sol.)
 - p value 0.17
 - $\triangleright C_{9} C_{9}^{SM} = -0.8^{+0.2}_{-0.5}$
 - \triangleright 2 σ deviation from SM
 - $\zeta_{v}^{L(R)}$ decrease wrt. $SM(\nu$ -only) and SM basis

- model comparison using Bayes factor and model priors
- compare scenarios only at SM-like solution A(')
- adjust priors to contain only A(')
- results
 - ▶ SM(*v*-only) wins over SM basis: odds of 100:1
 - ► SM(ν-only) wins over SM+SM' basis: odds of 22:1
 - ▶ SM+SM' basis wins over SM basis: odds of 4.5:1

Conclusion

- all three scenarios describe $b o s(\gamma, \ell^+ \ell^-)$ data well
- SM(*v*-only) wins comparison with SM and SM+SM'
 - subleading power correction on top of QCDF: 10–20%
- several tensions in all scenarios compare talk by D. Straub
 - $\langle P'_5 \rangle_{[1,6]}$ reduced pull in fit due to power corrections
 - $\langle F_L \rangle_{[1,6]}$ from BaBar, ATLAS (both preliminary) persist
 - $\langle P'_4 \rangle_{[14.18,16]}$ LHCb persists
- new physics signal only for
 - SM+SM' basis
 - (also: SM basis with "post HEP'13 (selection)" subset of data)
- data also allows inference of form factor parameters
- looking forward to further LHC analyses (2012 datasets) and the prospects of Belle-II

Backup Slides

(Angular) Observables in $B \to K^* \ell^+ \ell^-$

- kinematics
 - dilepton mass squared q^2
 - three angles
- complicated diff. decay width
 - ▶ 12(+) angular observables J_n
 - express all observables through J_n
 - ► compose observ. from *J_n* with specific benefits

Definitions

$$\begin{split} &\Gamma \sim 3J_{1c} + 6J_{1s} - J_{2c} - 2J_{2s} \quad A_{\rm FB} \sim \frac{J_{6s}}{\Gamma} \qquad F_L \sim \frac{3J_{1c} - J_{2c}}{\Gamma} \\ &P_4' \sim \frac{+J_4}{\sqrt{-J_{2s}J_{2c}}} \qquad P_5' \sim \frac{+J_5}{2\sqrt{-J_{2s}J_{2c}}} \quad P_6' \sim \frac{-J_7}{2\sqrt{-J_{2s}J_{2c}}} \end{split}$$

D. van Dyk (U. Siegen)

 $|\Delta B| = |\Delta S| = 1$ Wilson Coefficients

- toy Monte Carlo using priors + theory constraints (FFs)
- calculate observable for 10^5 samples
- find minimal 68% CL intervals

	q^2 [GeV ²]	$\langle P_4' \rangle$		$\langle P_5' angle$		$10^2 imes \langle P_6' angle$	
BBvD	[1,6]	+0.46	$^{+0.12}_{-0.11}$	-0.335	$^{+0.085}_{-0.075}$	-6.4	±1.7
	[2, 4.3]	+0.48	$^{\rm +0.11}_{\rm -0.10}$	-0.315	$^{+0.074}_{-0.090}$	-7.2	$^{+1.5}_{-2.2}$
LHCb [†]	[1,6]	+0.58	$^{+0.33}_{-0.36}$	+0.21	$^{+0.20}_{-0.21}$	+18	±21
	[2, 4.3]	+0.74	$^{+0.11}_{-0.53}$	+0.29	$^{+0.40}_{-0.39}$	+15	$\substack{+38\\-36}$

†: [LHCb 1308.1707], adjusted to theory convention

D. van Dyk (U. Siegen)

2012 Results (SM Basis)

early 2012

- figure from [1205.1838]
- no $B \to X_s\{\gamma, \ell^+\ell^-\}$
- only LHCb bound on $B_s \to \mu^+ \mu^-$
- $B \rightarrow K^{(*)}\ell^+\ell^-$: $\mathcal{B}, A_{\rm FB}, F_L, A_T^{(2)}, S_3$

•
$$B \to K^* \gamma$$
: $\mathcal{B}, S_{K^* \gamma}, C_{K^* \gamma}$

♦: Standard Model

Results (SM Basis, Selection)

 $\blacklozenge: \mathsf{Standard} \mathsf{ Model}, \qquad \times: \mathsf{ best-fit point}$

(light-) red: 68% CL (95% CL) for full dataset

blue solid (blue dashed): 68% CL (95% CL) for selection

post HEP'13 (selection)

- with $B \to X_s\{\gamma, \ell^+\ell^-\}$
- $B_s \rightarrow \mu^+ \mu^-$ from LHCb and CMS
- same data as

[Descotes-Genon/Matias/Virto 1307.5683] exclusive decays limited:

- only $B \to K^* \ell^+ \ell^-!$
- only LHCb data!
- ▶ only $q^2 \in [1, 6]$ GeV²
- best-fit point similar to

[Descotes-Genon et al. 1307.5683]

▶ less tension, only $\lesssim 2\sigma$ ▶ $C_9 - C_9^{SM} \simeq -1.3 \pm 0.5$

dashed: prior [Khodjamirian/Mannel/Pivovarov/Wang 1006.4945]

D. van Dyk (U. Siegen)

 $|\Delta B| = |\Delta S| = 1$ Wilson Coefficients

15.10.2013 20 / 14

dashed: prior [Khodjamirian/Mannel/Pivovarov/Wang 1006.4945]

more precise than prior

•
$$B o K^*$$
: ξ_{\perp} from

►
$$B \rightarrow X_s \gamma$$

► $B \rightarrow K^* \gamma$
► $B \rightarrow K^* \ell^+ \ell^-$
► theory input
results @ 68% CL

$$\blacktriangleright$$
 V(0) = 0.37^{+0.03}_{-0.02}

•
$$A_1(0) = 0.24 \pm 0.03$$

D. van Dyk (U. Siegen)

15.10.2013 20 / 14

dashed: prior [Khodjamirian/Mannel/Pivovarov/Wang 1006.4945]

• more precise than prior

•
$$B o K^*$$
: ξ_{\perp} from

$$B \to X_s \gamma B \to K^* \gamma B \to K^* \ell^+ \ell^- theory input$$

$$\blacktriangleright$$
 V(0) = 0.37^{+0.03}_{-0.02}

•
$$A_1(0) = 0.24 \pm 0.03$$

•
$$A_2(0) = 0.22 \pm 0.04$$

D. van Dyk (U. Siegen)

dashed: prior [Khodjamirian/Mannel/Pivovarov/Wang 1006.4945]

• more precise than prior

•
$$B o K^*$$
: ξ_{\perp} from

$$B \to X_s \gamma B \to K^* \gamma B \to K^* \ell^+ \ell^- theory input$$

• results @ 68% CL

ratio of central values

 $V(0)/A_1(0)\simeq 1.5$

 $A_2(0)/A_1(0) \simeq 0.9$

agree w/ (SE2 full)

[Hambrock/Hiller/Schacht/Zwicky 1308.4379]

dashed: prior [Khodjamirian/Mannel/Pivovarov/Wang 1006.4945], modified to accomodate [Ball/Zwicky hep-ph/0406232]

solid: posterior, green: 68% CL, yellow: 95% CL

• more precise than prior

•
$$B \rightarrow K$$
:

•
$$B \to K \ell^+ \ell^-$$

• Lattice

•
$$f_+(0) = 0.30 \pm 0.02$$

D. van Dyk (U. Siegen)

15.10.2013 21 / 14

dashed: prior [Khodjamirian/Mannel/Pivovarov/Wang 1006.4945],

• more precise than prior

•
$$B \rightarrow K$$
:

►
$$B \rightarrow K \ell^+ \ell^-$$

► Lattice
results @ 68% CL

$$f_{+}(0) = 0.30 \pm 0.02$$

$$h^{+} = 25 \pm 0.4$$

$$b_1^{+} = -2.5 \pm 0.4$$

D. van Dyk (U. Siegen)

15.10.2013 21 / 14

dashed: prior [Khodjamirian/Mannel/Pivovarov/Wang 1006.4945],

• more precise than prior

•
$$B \rightarrow K$$
:

$$\blacktriangleright B \to K\ell^+\ell^-$$

Lattice

- results @ 68% CL
 - $f_+(0) = 0.30 \pm 0.02$ • $b_1^+ = -2.5 \pm 0.4$
- small tension
 - ► LHCb lo q²: −1.4σ
 - ► LHCb hi q²: +1.1σ
 - Lattice: $+0.5\sigma$

D. van Dyk (U. Siegen)

Form Factors [Khodjamirian et al. 1006.4945]

- values @ $q^2 = 0$ and slope: two parameters per FF
- z-parametrization
- asymmetric priors, use LogGamma function

CKM [update of hep-ph/0012308]

- Wolfenstein parametrization
- UTfit pre-Moriond2013, tree-level data only

Quark Masses [PDG]

D. van Dyk (U. Siegen)

parametrize unknown subleading contributions

 $B \to K^* \ell^+ \ell^-$

- lo q^2 : 6 parameters, one scaling factor per amplitude
- hi q²: 3 parameters
- $B \to K \ell^+ \ell^-$
 - lo q²: 1 parameter
 - hi q²: 1 parameter

for all: Gaussian with 1σ interval $\pm \Lambda_{QCD}/m_b \simeq \pm 0.15$

- test statistic: function of data and model (parameters) $\chi^2 = \chi^2(D, \vec{\theta})$
- only one data set observed $D_{obs} \Rightarrow \chi^2_{obs}$
- $p \equiv P(\chi^2 > \chi^2_{obs})$

But how to fix $\vec{\theta}$?

1. this work
$$\vec{\theta} = (\vec{C}, \vec{\nu})$$
 at (local) mode of posterior, $\chi^2 \sim \frac{(x-\mu)^2}{\sigma_{exn}^2}$

2. Descotes-Genon et al. [1307.5683] $\vec{\theta} = \vec{C}$ at (local) mode of likelihood, $\chi^2 \sim \frac{(x-\mu)^2}{\sigma_{exp}^2 + \sigma_{theo}^2}$

Kinematics of $\bar{B} \to \bar{K} \pi \ell^+ \ell^-$

Kinematic Variables $4m_{\ell}^2 \le q^2 \le (M_B - M_{K^*})^2$ $-1 \le \cos \theta_{\ell} \le 1$ $-1 \le \cos \theta_{K^*} \le 1$ $0 \le \phi \le 2\pi$ $[(M_K + M_{\pi})^2 \le k^2 \le (M_B - \sqrt{q^2})^2]$

On-shell and S-Wave

- one usually assumes on-shell decay of P-wave K^* ($\sim \sin \theta_{K^*}, \cos \theta_{K^*}$)
- for high precision: consider width of K^{*}, and J = 0 (S-wave) (~ θ_{K*}) Kπ-final-state from K₀^{*} and non-resonant background

Kinematics of $\bar{B} \rightarrow \bar{K} \pi \ell^+ \ell^-$

 Kinematic Variables

 $4m_\ell^2 \le q^2 \le (M_B - M_{K^*})^2$
 $-1 \le \cos \theta_\ell \le 1$
 $-1 \le \cos \theta_{K^*} \le 1$
 $0 \le \phi \le 2\pi$
 $[(M_K + M_\pi)^2 \le k^2 \le (M_B - \sqrt{q^2})^2]$

Large vs. Low Recoil (for illustration)

Differential Decay Rate for pure P-wave state

$$\begin{aligned} \frac{\mathrm{d}^{4}\Gamma}{\mathrm{d}q^{2}\mathrm{d}\cos\theta_{\ell}\mathrm{d}\cos\theta_{K^{*}}\mathrm{d}\phi} &\sim J_{1s}\sin^{2}\theta_{K^{*}} + J_{1c}\cos^{2}\theta_{K^{*}} \\ &+ (J_{2s}\sin^{2}\theta_{K^{*}} + J_{2c}\cos^{2}\theta_{K^{*}} \quad)\cos 2\theta_{\ell} \\ &+ (J_{3}\cos 2\phi + J_{9}\sin 2\phi)\sin^{2}\theta_{K^{*}}\sin^{2}\theta_{\ell} \\ &+ (J_{4}\sin 2\theta_{K^{*}} \quad)\sin 2\theta_{\ell}\cos\phi \\ &+ (J_{5}\sin 2\theta_{K^{*}} \quad)\sin \theta_{\ell}\cos\phi \\ &+ (J_{6s}\sin^{2}\theta_{K^{*}} + J_{6c}\cos^{2}\theta_{K^{*}})\cos\theta_{\ell} \\ &+ (J_{7}\sin 2\theta_{K^{*}} \quad)\sin \theta_{\ell}\sin\phi \\ &+ (J_{8}\sin 2\theta_{K^{*}} \quad)\sin 2\theta_{\ell}\sin\phi ,\end{aligned}$$

 $J_i \equiv J_i(q^2)$: 12 angular observables

Angular Distribution [Krüger/Matias '05, Altmannshofer et al. '08, Blake/Egede/Shires '12]

Differential Decay Rate for mixed P- and S-wave state

$$\frac{d^{4}\Gamma}{dq^{2}d\cos\theta_{\ell}d\cos\theta_{K^{*}}d\phi} \sim J_{1s}\sin^{2}\theta_{K^{*}} + J_{1c}\cos^{2}\theta_{K^{*}} + J_{1i}\cos\theta_{K^{*}} + (J_{2s}\sin^{2}\theta_{K^{*}} + J_{2c}\cos^{2}\theta_{K^{*}} + J_{2i}\cos\theta_{K^{*}})\cos 2\theta_{\ell} + (J_{3}\cos 2\phi + J_{9}\sin 2\phi)\sin^{2}\theta_{K^{*}}\sin^{2}\theta_{\ell} + (J_{4}\sin 2\theta_{K^{*}} + J_{4i}\cos\theta_{K^{*}})\sin 2\theta_{\ell}\cos\phi + (J_{5}\sin 2\theta_{K^{*}} + J_{5i}\cos\theta_{K^{*}})\sin\theta_{\ell}\cos\phi + (J_{6s}\sin^{2}\theta_{K^{*}} + J_{6c}\cos^{2}\theta_{K^{*}})\cos\theta_{\ell} + (J_{7}\sin 2\theta_{K^{*}} + J_{6i}\cos\theta_{K^{*}})\sin\theta_{\ell}\sin\phi + (J_{8}\sin 2\theta_{K^{*}} + J_{6i}\cos\theta_{K^{*}})\sin 2\theta_{\ell}\sin\phi,$$

 $J_i \equiv J_i(q^2, k^2)$: 12 angular observables, no further needed [Bobeth/Hiller/DvD '12] Conclusion: remove S-wave in exp. analysis

- angular analysis [Egede/Blake/Shires '12]
- side-band analysis (for $J_{1s,1c,2s,2c}$) [Bobeth/Hiller/DvD '12]

D. van Dyk (U. Siegen)

 $|\Delta B| = |\Delta S| = 1$ Wilson Coefficients

15.10.2013 26 / 14

Building Blocks of the Angular Observables (I)

Form Factors (P-Wave)

• hadronic matrix elements $\langle \bar{K^*} | \bar{s} \Gamma b | \bar{B} \rangle$ parametrized through 7 form factors:

$$\langle \bar{K}^* | \bar{s} \gamma^\mu b | \bar{B} \rangle \sim V \quad \langle \bar{K}^* | \bar{s} \gamma^\mu \gamma_5 b | \bar{B} \rangle \sim A_{0,1,2} \quad \langle \bar{K}^* | \bar{s} \sigma^{\mu\nu} b | \bar{B} \rangle \sim T_{1,2,3}$$

- form factors largest source of theory uncertainty amplitude $\sim 10\% 15\% \Rightarrow$ observables: $\sim 20\% 50\%$
 - ► available from Light Cone Sum Rules [Ball/Zwicky '04, Khodjamirian et al. '11]
 - ► Lattice QCD: work in progress [e.g. Liu et al. '11, Wingate '11]
 - extract ratios from low recoil data

[Hambrock/Hiller '12, Beaujean/Bobeth/DvD/Wacker '12]

Building Blocks of the Angular Observables (II)

Transversity amplitudes A_i

- SM-like + chirality flipped: essentially four amplitudes $A_{\perp,\parallel,0,t}$ [Krüger/Matias '05]
- $\mathcal{O}_{S(')}$ give rise to A_S , $\mathcal{O}_{P(')}$ absorbed by A_t [Altmannshofer et al. '08]
- $\mathcal{O}_{T(5)}$ give rise to 6 new amplitudes A_{ab} , $(ab) = (0t), (\parallel \perp), (0\perp), (t\perp), (0\parallel), (t\parallel)$ [Bobeth/Hiller/DvD '12]
- altogether: 11 complex-valued amplitudes

Angular Observables

• J_i functionals of $A_S, A_a, A_{ab}, a, b = t, 0, \parallel, \perp$ e.g.

$$J_3(q^2) = rac{3eta_\ell}{4}ig[|A_\perp|^2 - |A_\parallel|^2 + 16ig(|A_{t\parallel}|^2 + |A_{0\parallel}|^2 - |A_{t\perp}|^2 - |A_{0\perp}|^2ig)ig]$$

28 / 14

 β_{ℓ} : lepton velocity in dilepton rest frame $m_{\ell}^2/q^2 \rightarrow 0 \Rightarrow \beta_{\ell} \rightarrow 1$ D. van Dyk (U. Siegen) $|\Delta B| = |\Delta S| = 1$ Wilson Coefficients 15.10.2013

"Standard" Observables

considerable theory uncertainty due to form factors

Batch #1, to be extracted from CP average

$$\langle \Gamma \rangle = \langle 2J_{1s} + J_{1c} - \frac{2}{3}J_{2s} - \frac{1}{3}J_{2}c \rangle \qquad \langle A_{\rm FB} \rangle = \frac{\langle 2J_{6s} + J_{6c} \rangle}{2\langle \Gamma \rangle} \\ \langle F_L \rangle = \frac{\langle 3J_{1c} - J_{2}c \rangle}{\langle 3\Gamma \rangle} \qquad \langle F_T \rangle = \frac{\langle 6J_{1s} - 2J_{2s} \rangle}{\langle 3\Gamma \rangle}$$

Γ: decay width A_{FB} : forward-backward asymm. $F_L = 1 - F_T$: long./trans. pol. Batch #2, CP (a)symmetries [Bobeth/Hiller/Piranishvili '08, Altmannshofer et al. '08]

$$\langle A_i \rangle \sim \frac{\langle J_i - \overline{J_i} \rangle}{\langle \Gamma + \overline{\Gamma} \rangle} \qquad \qquad \langle S_i \rangle \sim \frac{\langle J_i + \overline{J_i} \rangle}{\langle \Gamma + \overline{\Gamma} \rangle}$$

overline: CP conjugated mode, also: mixing-induced CP asymm in $B_s \rightarrow \phi \ell^+ \ell^ \langle X \rangle \equiv \int dq^2 X(q^2)$

D. van Dyk (U. Siegen)

 $|\Delta B| = |\Delta S| = 1$ Wilson Coefficients

Pollution due to Charm Resonances

Narrow Resonances: J/ψ and $\psi(2s)$

- experiments veto q^2 -region of narrow charmonia J/ψ and $\psi(2s)$
- however: resonance affects observables outside the veto!

Approach by Theorists: Divide and Conquer

- treat region below J/ ψ (aka large recoil) differently than above $\psi(2s)$
- design combinations of J_i which have reduced theory uncertainty in only one kinematic region

D. van Dyk (U. Siegen)

Large Recoil (I)

QCD Factorization (QCDF) + Soft Collinear Effective Theory (SCET)

- calculate $\bar{q}q$ loops perturbatively, expand in $1/m_b$, $1/E_{K^*}$
- relate matrix elements to universal hadronic quantities:
 - Light Cone Distribution Amplitudes (LCDAs)
 - ▶ form factors
 - decay constants

[Beneke/Feldmann '00, Beneke/Feldmann/Seidel '01 & '04]

Light Cone Sum Rules (LCSR)

- calculate $\langle \bar{c}c \rangle,\, \langle \bar{c}cG \rangle$ on the light cone for $q^2 \ll 4m_c^2$
- · achieves resummation of soft gluon effects
- use analycity of amplitude to relate results to $q^2 < M_{\psi'}^2$
- uses many of the same inputs as QCDF+SCET
- includes parts of QCDF+SCET results

D. van Dyk (U. Siegen)

Large Recoil (I)

QCD Factorization (QCDF) + Soft Collinear Effective Theory (SCET)

- calculate $\bar{q}q$ loops perturbatively, expand in $1/m_b$, $1/E_{K^*}$
- relate matrix elements to universal hadronic quantities:
 - Light Cone Distribution Amplitudes (LCDAs)
 - ▶ form factors
 - decay constants

[Beneke/Feldmann '00, Beneke/Feldmann/Seidel '01 & '04]

Combination of QCDF+SCET and LCSR Results

- not yet!
 - no studies yet to find impact on optimized observables at large recoil!
 - LCSR results are not included in following discussion

Large Recoil (II)

SM + chirality flipped

• transversity amplitudes factorize up to power supressed terms $A_{\perp}^{L,R} \sim X_{\perp}^{L,R} \times \xi_{\perp} \qquad A_{\parallel}^{L,R} \sim X_{\parallel}^{L,R} \times \xi_{\perp} \qquad A_{0}^{L,R} \sim X_{0}^{L,R} \times \xi_{\parallel}$

 $\xi_{\perp,\parallel}$: soft form factors $X_i^{L,R}$: combinations of Wilson coefficients [Beneke/Feldmann/Seidel '01 & '04, Bobeth/Hiller/Piranishvili '08, Altmannshofer et al. '08]

Optimized Observables

enhanced sensitivity to right-handed currents, reduced form factor dependence [Krüger/Matias '05, Egede et al. '08 & '10]

$$\begin{split} A_{T}^{(2)} &= \frac{|A_{\perp}|^{2} - |A_{\parallel}|^{2}}{|A_{\perp}|^{2} + |A_{\parallel}|^{2}} \sim J_{3} \qquad A_{T}^{(3)} = \frac{|A_{0}^{L}A_{\parallel}^{L*} + A_{0}^{R*}A_{\parallel}^{R}|}{\sqrt{|A_{0}|^{2}|A_{\parallel}|^{2}}} \sim J_{4}, J_{7} \\ A_{T}^{(4)} &= \frac{|A_{0}^{L}A_{\perp}^{L*} - A_{0}^{R*}A_{\perp}^{R}|}{\sqrt{|A_{0}|^{2}|A_{\perp}|^{2}}} \sim J_{5}, J_{8} \qquad A_{T}^{(5)} = \frac{|A_{\perp}^{L}A_{\parallel}^{R*} + A_{\perp}^{R*}A_{\parallel}^{L}|}{|A_{\perp}|^{2} + |A_{\parallel}|^{2}} \\ D_{V} \text{ van Dyk (U. Siegen)} \qquad |\Delta B| = |\Delta S| = 1 \text{ Wilson Coefficients} \qquad 15.10.2013 \qquad 32 / 14 \end{split}$$

Large Recoil (II)

SM + chirality flipped

• transversity amplitudes factorize up to power supressed terms $A_{\perp}^{L,R} \sim X_{\perp}^{L,R} \times \xi_{\perp} \qquad A_{\parallel}^{L,R} \sim X_{\parallel}^{L,R} \times \xi_{\perp} \qquad A_{0}^{L,R} \sim X_{0}^{L,R} \times \xi_{\parallel}$

 $\xi_{\perp,\parallel}$: soft form factors $X_i^{L,R}$: combinations of Wilson coefficients [Beneke/Feldmann/Seidel '01 & '04, Bobeth/Hiller/Piranishvili '08, Altmannshofer et al. '08]

Further Optimized Observables

enhanced sensitivity to right-handed currents, reduced form factor dependence [Becirevic/Schneider '11]

$$A_T^{(\mathrm{re})} \propto \frac{J_{6s}}{J_{2s}} \qquad \qquad A_T^{(\mathrm{im})} \propto \frac{J_9}{J_{2s}}$$

Low Recoil

SM basis [Bobeth/Hiller/DvD '10] + chirality flipped [Bobeth/Hiller/DvD '12]

• transversity amplitudes factorize

$$A_{\perp,\parallel,0}^{L,R} \sim C_{\pm}^{L,R} \times f_{\perp,\parallel,0} + O\left(\frac{\alpha_{s}\Lambda}{m_{b}}, \frac{\mathcal{C}_{7}\Lambda}{\mathcal{C}_{9}m_{b}}\right) \quad \text{SM:} \quad C_{+}^{L,R} = C_{-}^{L,R}$$

Tensor operators [Bobeth/Hiller/DvD '12]

• 6 new transversity amplitudes, still factorize!

$$A_{ab} \sim \mathcal{C}_{T(T5)} imes f_{\perp,\parallel,0} + O\left(rac{\Lambda}{m_b}
ight)$$

• 3 new combinations of Wilson coefficients

D. van Dyk (U. Siegen)

 $|\Delta B| = |\Delta S| = 1$ Wilson Coefficients

q^2 Spectrum of the Branching Ratio $\mathcal{B} = \tau_B \Gamma$

$\bar{q}q$ Pollution

- 4-quark operators like $\mathcal{O}_{1c,2c}$ induce $b \to s\bar{c}c(\to \ell^+\ell^-)$ via loops
- hadronically $B \to K^* J/\psi(\to \ell^+ \ell^-)$ or higher charmonia
- experiment: cut narrow resonances $J/\psi\equiv\psi(1S)$ and $\psi'=\psi(2S)$
- theory: handle non-resonant quark loops/broad resonances > 2S

q^2 Spectrum of the Branching Ratio $\mathcal{B} = \tau_B \Gamma$

