Constraining New Physics in $b \rightarrow s$ with WilsonFitter

Danny van Dyk

2nd Meeting SUSY/BSM Fit WG, DESY Hamburg
November 22nd, 2010

Constraining New Physics in $b \rightarrow s$ with EOS

Danny van Dyk on behalf of the EOS WG

2nd Meeting SUSY/BSM Fit WG, DESY Hamburg November 22nd, 2010
http://project.het.physik.tu-dortmund.de/eos/

New Physics Contributions to FCNCs

- $b \rightarrow s$ transitions mediated by Flavor Changing Neutral Currents
- New Physics contributions can enter via extended particle content
- probe for new physics indirectly by studying loop dominated processes

Model Independent Analysis

$b \rightarrow s$ Hamiltonian

$$
\mathcal{H}^{\mathrm{eff}}=-\frac{4 G_{\mathrm{F}}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i} \mathcal{C}_{i}(\mu) \mathcal{O}_{i}(\mu)
$$

SM basis (dominant operators for $b \rightarrow s \ell^{+} \ell^{-}$):

$$
\mathcal{O}_{7} \propto\left[\bar{s} \sigma_{\mu \nu} P_{R} b\right] F^{\mu \nu} \quad \mathcal{O}_{9(10)} \propto\left[\bar{s} \gamma_{\mu} P_{L} b\right]\left[\bar{\ell} \gamma^{\mu}\left(\gamma_{5}\right) \ell\right]
$$

- calculate long distance physics via $\langle\ldots| \mathcal{O}_{i}\left(\mu=m_{b}\right)|\ldots\rangle$
- treat $\mathcal{C}_{i}\left(\mu=m_{b}\right)$ as free parameters, $i=(7), 9,10$
- search for best-fit solutions in the \mathcal{C}_{i} parameter space
- $\left|\mathcal{C}_{7}\right|$ constrained by existing $\mathcal{B}(b \rightarrow s \gamma)$ data: $\left|\mathcal{C}_{7}\right| \simeq\left|\mathcal{C}_{7}^{\mathrm{SM}}\right|$
- fit $\mathcal{C}_{9,10}$ from existing $B \rightarrow K^{*} \ell^{+} \ell^{-}$and $B \rightarrow X_{s} \ell^{+} \ell^{-}$data

Long Distance Physics - Observables

 each $\Delta B=1$ observable is $P \equiv P\left(\mathcal{C}_{i}\right)$
Exclusive

- $B \rightarrow K^{*} \ell^{+} \ell^{-}: \mathcal{B}, A_{\mathrm{FB}}, F_{\mathrm{L}}, A_{\mathrm{T}}^{(i)}$ at $\mathrm{NLO} \alpha_{s}$
$1 \mathrm{GeV}^{2} \leq q^{2} \leq 6 \mathrm{GeV}^{2}$
M. Beneke et al '01 and '04
- $B \rightarrow K^{*} \ell^{+} \ell^{-}: \mathcal{B}, A_{\mathrm{FB}}, F_{\mathrm{L}}, H_{\mathrm{T}}^{(i)}$ at NLO in α_{s}
$14 \mathrm{GeV}^{2} \leq q^{2} \leq q_{\max }^{2}$
B. Grinstein, D. Pirjol '04
C. Bobeth, G. Hiller, DvD '10
- $B \rightarrow X_{s} \ell^{+} \ell^{-}: \mathcal{B}$ at NNLO, $1 / m_{b}$ and log-enh. EM corr. $1 \mathrm{GeV}^{2} \leq q^{2} \leq 6 \mathrm{GeV}^{2}$
T. Huber et al '05
- $B \rightarrow X_{s} \gamma: \mathcal{B}$ NNLO in the SM

NP contr. only at LO
$E_{\gamma} \geq 1.6 \mathrm{GeV}$
M. Misiak et al '06

CP asymm. $\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)$in preparation

Short Distance Physics - Wilson Coefficients

$b \rightarrow s$ Wilson coefficients in the SM as implemented

- matching to SM at NNLO in α_{s}
- running at NNLO in α_{s}
- NNLO in $\alpha_{s} \& \alpha_{e}$ planned for matching and running.
- based on C. Bobeth, P. Gambino, M. Gorbahn, U. Haisch '03

Evaluation in SUSY models:

- e.g. additional chargino/charged higgs loops
- work in progress S. Schacht

Scan Implementations

Method \# 1:

implemented + fully tested

- goodness-of-fit scans for all observables
- uses numeric code directly
- expensive: numeric integrations (QCDF, integrated observables)
- needs much computing resources
- example (CPV): 10^{7} points take 16 nodes $\times 8$ cores $\times 1$ week

Method \# 2:
implemented + caveat emptor

- specialised scans for observable subset
- exploit polynomial structure of observ. in \mathcal{C}_{i}
- determine polynomial of integrated observables
- works even on a laptop (fast!)
- example (CPV): 10^{7} points take 1 laptop $\times 1$ core $\times 40 \mathrm{~min}$

Global Constraints

- use available input on all implemented processes
- calculate goodness-of-fit of measurement $X \pm \sigma$ to prediction $T \pm \Delta^{ \pm}$

$$
\sigma \cdot \chi= \begin{cases}\min \left\{T \pm \Delta^{ \pm}-X\right\} & X \notin\left[T-\Delta^{-}, T+\Delta^{+}\right] \\ 0 & \text { otherwise }\end{cases}
$$

- sum up χ^{2} for all inputs and calculate likelihood:

$$
-2 \ln \mathcal{L}=\sum_{i} \chi_{i}^{2}
$$

- quite conservative approach

Global Constraints

- scan over components of Wilson coefficients: $c_{a}=\left|\mathcal{C}_{i}\right|, \arg \mathcal{C}_{i}$
- marginalise scan with more than two components $\left\langle c_{a}, c_{b}\right\rangle$:

$$
\mathcal{L}\left(c_{a}, c_{b}, c_{c}, \ldots, c_{z}\right) \mapsto \mathcal{L}\left(c_{a}, c_{b}\right) \equiv \max _{c_{c}, \ldots, c_{z}} \mathcal{L}
$$

- alternatively:

$$
\mathcal{L}\left(c_{a}, c_{b}, c_{c}, \ldots, c_{z}\right) \mapsto \mathcal{L}\left(c_{a}, c_{b}\right) \equiv \frac{1}{V} \int_{V} \mathrm{~d} c_{c} \ldots \mathrm{~d} c_{z} \mathcal{L}
$$

Global Constraints - Inputs

Included:

- $B \rightarrow K^{*} \ell^{+} \ell^{-}: \mathcal{B}$ (3 q^{2} bins), A_{FB} ($3 q^{2}$ bins), $F_{\mathrm{L}}\left(1 q^{2}\right.$ bins) Source: Belle '09, CDF '10 (preliminary)
- $B \rightarrow X_{s} \ell^{+} \ell^{-}: \mathcal{B}\left(1 q^{2}\right.$ bin $)$

Source: BaBar '04, Belle '05

- $B \rightarrow X_{s} \gamma: \mathcal{B}$ for $E_{\gamma}>1.6 \mathrm{GeV}$ Source: HFAG (March '10)
total of 17 inputs included

Global Constraints - Inputs

Available:

- $B \rightarrow K \ell^{+} \ell^{-}: \mathcal{B}$ and $A_{F B}$ ($3 q^{2}$ bins each) Source: Belle '09, CDF '10 (preliminary)
total of 12 inputs not yet included

Excluded:

- $B \rightarrow K^{*} \ell^{+} \ell^{-}: \mathcal{B}, A_{\mathrm{FB}}$ and $F_{\mathrm{L}}\left(2 q^{2}\right.$ bins each $)$ BaBar '06/'08 data have unsuitable q^{2} binning total of 6 inputs unusable

Global Constraints - Input Example ($B \rightarrow K^{*} \ell^{+} \ell^{-}$)

SM Result for $A_{\text {FB }}$
Exp. Data: BaBar'08, Belle'09, CDF'09

Large Recoil $q^{2} \ll m_{b}^{2}$
$q^{2} \simeq m_{b}^{2}$ Low Recoil
C.Bobeth,G.Hiller,DvD '10

Global Constraints - SM Basis

- fix $\left|\mathcal{C}_{7}\right|$ to best-fit solution from $\mathcal{B}\left(B \rightarrow X_{s} \gamma\right)\left(\simeq\left|\mathcal{C}_{7}^{\text {SM }}\right|\right)$
- scan 30 points in both \mathcal{C}_{9} and \mathcal{C}_{10} with 0.5 increment
- scan for both signs $\mathcal{C}_{7}= \pm \mathcal{C}_{7}^{\text {SM }}$
- use SM values of $\mathcal{C}_{1 \ldots 6}, \mathcal{C}_{8}$ (less sensitive to NP)

Global Constraints - SM Basis

\mathcal{C}_{9} vs \mathcal{C}_{10} : green square marks the SM

C. Bobeth, G.Hiller, DvD '10

Data Sources: Belle + CDF data of $B \rightarrow K^{*} \ell^{+} \ell^{-}$, BaBar + Belle data of $B \rightarrow X_{s} \ell^{+} \ell^{-}$

Global Constraints - SM Basis + CPV

- fix $\left|\mathcal{C}_{7}\right|$ to best-fit solution from $\mathcal{B}\left(B \rightarrow X_{s} \gamma\right)\left(\simeq\left|\mathcal{C}_{7}^{\text {SM }}\right|\right)$
- scan 60 points in both $\left|\mathcal{C}_{9}\right|$ and $\left|\mathcal{C}_{10}\right|$ with 0.25 increment
- scan 16 points in $\arg \mathcal{C}_{7}$
- scan 32 points in both $\arg \mathcal{C}_{9}$ and $\arg \mathcal{C}_{10}$
- use SM values of $\mathcal{C}_{1 \ldots 6}, \mathcal{C}_{8}$ (less sensitive to NP)
- marginalize to $\mathcal{L}\left(\left|\mathcal{C}_{9}\right|,\left|\mathcal{C}_{10}\right|\right)$

Global Constraints - SM Basis + CPV

PRELIMINARY, $\left|\mathcal{C}_{9}\right|$ vs $\left|\mathcal{C}_{10}\right|$. Green square marks the SM.

C.Bobeth, G.Hiller, DvD (in preparation)

Data sources: Belle + CDF data of $B \rightarrow K^{*} \ell^{+} \ell^{-}$, BaBar + Belle data of $B \rightarrow X_{s} \ell^{+} \ell^{-}$

Global Constraints - Comparison MSSM+MFV

VERY PRELIMINARY, \mathcal{C}_{9} vs \mathcal{C}_{10}, MSSM (charged higgs + charginos) in green

$$
\begin{gathered}
\mathcal{C}_{7}=+\mathcal{C}_{7}^{\mathrm{SM}} \\
\text { All Data }\left(C_{7}=C_{7}^{\mathrm{SM}}\right)
\end{gathered}
$$

$$
\mathcal{C}_{7}=-\mathcal{C}_{7}^{\mathrm{SM}}
$$

C.Gross, G.Hiller, S.Schacht (in preparation)

Summary and Outlook

EOS is ...

- a generator/evaluator for several B flavor observables
- capable of constraining New Physics with existing data

We plan to ...

- fully implement $B \rightarrow X_{s} \gamma$ at NNLO (not started yet)
- implement $B \rightarrow K \ell^{+} \ell^{-}$(work in progress)
- broaden the operator basis to helicity-flipped, scalar and/or tensor operators (not started yet)

Proper release planned for 2011
(However, sources are already available on the web)

http://project.het.physik.tu-dortmund.de/eos/

Literature

- $B \rightarrow K^{*} \ell^{+} \ell^{-}$NLO calculation at Large Recoil (м.Beneke, T.Feldmann, D. Seidel '01 and '04): arxiv:hep-ph/0106067 and arxiv:hep-ph/0412400
- $B \rightarrow K^{*} \ell^{+} \ell^{-}$Low Recoil observables and model independent analysis (C.Bobeth, G.Hiller, DvD '10): arxiv:1006.5013 [hep-ph]
- $B \rightarrow X_{s} \ell^{+} \ell^{-}$NNLO branching ratio (C.Bobeth, P.Gambino, M.Gorbahn, U.Haisch '03): arxiv:hep-ph/0312090
- $B \rightarrow X_{s} \ell^{+} \ell^{-}$NNLO branching ratio (T.Huber, E.Lunghi, M.Misiak, D.Wyler '05): arxiv:hep-ph/0512066
- $B \rightarrow X_{s} \gamma$ NNLO branching ratio (M.Misiak et al '06): arxiv:hep-ph/0609232

Outline

EOS Implementation

- written in C++-0x (GCC version ≥ 4.4)
- mostly self-contained, only one external dependency (GNU Scientific Library)
- multi-threaded calculations
- memoisation of expensive calculations
- extensive testing framework (Unit Tests), covering physics and utilities alike

Operators beyond the SM

(pseudo)scalar operators:

$$
\mathcal{O}_{S(P)} \propto\left[\bar{s} P_{R} b\right][\bar{\ell} \ell]
$$

(pseudo)tensor operators:

$$
\mathcal{O}_{T(T 5)} \propto\left[\bar{s} \sigma_{\mu \nu} b\right]\left[\bar{\ell} \sigma^{\mu \nu}\left(\gamma_{5}\right) \ell\right]
$$

helicity-flipped basis (dominant operators for $b \rightarrow s \ell^{+} \ell^{-}$):

$$
\mathcal{O}_{7}^{\prime} \propto\left[\bar{s} \sigma_{\mu \nu} P_{L} b\right] F^{\mu \nu} \quad \mathcal{O}_{9(10)}^{\prime} \propto\left[\bar{s} \gamma_{\mu} P_{R} b\right]\left[\bar{\ell} \gamma^{\mu}\left(\gamma_{5}\right) \ell\right]
$$

