Developments in Exclusive $b \rightarrow s\ell^+\ell^-$ Decays

Danny van Dyk

NIKHEF Theory Seminar November 13th, 2014

Bundesministerium für Bildung und Forschung

Motivation

Basics of the $|\Delta B| = |\Delta S| = 1$ Effective Field Theory

Overview of Exclusive $b \rightarrow s \ell^+ \ell^-$ Decays

Development: $\Lambda_b \to \Lambda(\to N\pi)\ell^+\ell^-$

Development: Charmonium Resonances in $B \to K \ell^+ \ell^-$

Conclusion

Motivation

- the Standard Model of particle physics describes nature very well
- however: beyond SM physics seems likely, since the SM
 - ▶ ... does not allow for neutrino oscillations
 - ▶ ... has no candidate for dark matter
 - ▶ ... has no explanation for the emergence of different flavours
- consequence: search for the effects of new physics, either ...
 - ▶ ... directly, i.e., in the production of new particles at very high energies
 - ▶ ... indirectly, i.e., as loop effects in e.g. *b*-quark decays

Top-down vs. bottom-up in flavour physics

Top-down

- start with a New Physics model
- calculate effects on observables
- constrain model parameters from data

Bottom-up

- · for a given process: categorize all possible effects of new physics
- introduce *effective* couplings C_i , and determine their SM values
- constrain C_i from data
- *if* deviations from SM expectations are found, search for a model or models that can explain these specific deviations

- effective field theories (EFTs) describe the same effects up to a limiting scale μ as the respective full field theory but uses fewer degrees of freedom
 - ► example 4-fermi theory: includes the dynamics of leptons and neutrino as in the SM – in particular the µ decay – but W is not a dynamical degree of freedom
- · effective field theories are very compatible with the bottom-up approach
 - ► example 4-fermi theory: operator $[\bar{e}\gamma_{\rho}(1-\gamma_{5})\nu_{e}][\bar{\nu}_{\mu}\gamma^{\rho}(1-\gamma_{5})\mu]$ has effective coupling $G_{\rm F}$
 - natural extension: introduce further operators with anomalous spin structures (i.e. beyond the SM)
 - constrain their additional effective couplings from data (4-fermi: Michel parameter studies)

Basics of the $|\Delta B| = |\Delta S| = 1$ Effective Field Theory

• $b \rightarrow s \ell^+ \ell^-$ is a flavour-changing neutral current (FCNC)

- ▶ forbidden at tree level in the SM
- ▶ leading term arises at the one-loop level
- examples:

Effective Field Theory for $b \rightarrow s\ell^+\ell^-$ FCNCs

- remove heavy fields (SM: t, W, Z, beyond: ?) as dynamical degrees of freedom
 - ▶ technical term: to integrate out
 - new 4-fermion operators emerge with currents at different coordinates
 - non-local effective field theory, described by effective hamiltonian H^{eff}
- expand \mathcal{H}^{eff} in terms of *local* operators (OPE)
 - ▶ illustration at hand of W propagator:

$$\frac{1}{M_W^2 - p^2} = \frac{1}{M_W^2} \left[1 + \frac{p^2}{M_W^2} + O\left(\frac{p^4}{M_W^4}\right) \right]$$

- focus on leading-power term only
- ▶ next-to-leading-power suppressed by $p^2/M_W^2 \simeq 4 \cdot 10^{-3}$

D. van Dyk (Siegen)

Effective Hamiltonian

• "universal" $b \rightarrow s$ effective Hamiltonian

$$\mathcal{H}^{\mathsf{eff}} = -\frac{4G_{\mathrm{F}}}{\sqrt{2}} \Big[V_{tb} V_{ts}^* \sum_{i} \frac{\mathcal{C}_i \mathcal{O}_i}{\mathcal{O}_i} + O\left(V_{ub} V_{us}^*\right) \Big] + \mathsf{h.c.}$$

- describes all $b \rightarrow s$ transitions, including
 - $\blacktriangleright \ b \to sc\bar{c}$
 - $\blacktriangleright \ b \to s\gamma$
 - $\blacktriangleright \ b \to s \ell^+ \ell^-$
- model-independent correlations between observables

Some $b \to s\ell^+\ell^-$, $b \to s\gamma$ modes $B \to K^*\ell^+\ell^ B \to K\ell^+\ell^ B_s \to \mu^+\mu^ B \to K^*\gamma$ $B \to X_s\ell^+\ell^ B \to X_s\gamma$

exclusive decay modes: final state is fully specified

D. van Dyk (Siegen)

Effective Operators

Radiative and semileptonic operators

$$\mathcal{O}_{7(7')} = \frac{em_b}{4\pi} [\bar{s}\sigma^{\mu\nu} P_{R(L)}b] F_{\mu\nu} \qquad \qquad \mathcal{O}_{9(9')} = \frac{\alpha_e}{4\pi} [\bar{s}\gamma^{\mu} P_{L(R)}b] [\bar{\ell}\gamma_{\mu}\ell] \\ \mathcal{O}_{10(10')} = \frac{\alpha_e}{4\pi} [\bar{s}\gamma^{\mu} P_{L(R)}b] [\bar{\ell}\gamma_{\mu}\gamma_5\ell]$$

- $\mathcal{O}_{7,9,10}$ dominantly contribute to $b \to s \ell^+ \ell^-$ in the SM
- couplings of $\mathcal{O}_{7'}$ small, $\mathcal{O}_{9',10'}$ vanish in the SM
- suppressing spin structures other than $V \pm A$

Four-quark operators

dominant background

$$\mathcal{O}_1 = [\bar{c}\gamma^{\mu}T^aP_Lb][\bar{s}\gamma_{\mu}T^ac] \quad \mathcal{O}_2 = [\bar{c}\gamma^{\mu}P_Lb][\bar{s}\gamma_{\mu}c]$$

 $O\left(1\right)$ Wilson coefficients, contribute α_{e} suppressed via off-shell photon

D. van Dyk (Siegen)

Exclusive $b \to s\ell^+\ell^-$

13.11.2014 11 / 43

Renormalization Group Equations

- evaluate hadronic matrix elements $\langle \mathcal{O}_i \rangle$ at $\mu_b \simeq m_b$
 - typical scale for the problem
 - ▶ $\alpha_s(m_b)$ still reasonably small \Rightarrow perturbation series under control
- match (that is 'read off') \mathcal{C}_i at scale $\mu_0 \simeq M_W, m_t$
 - ▶ $C_{7,9,10}$ emerge at one-loop order, C_2 at tree level
 - α_e and α_s corrections under control
- however, $\mathcal{C}_i(\mu_0)\langle\mathcal{O}_i\rangle_{\mu_b}$ wildly inacurate
- solution: Renormalization Group Improved Perturbation Theory

$$\mathcal{C}_i(\mu_0) \to \mathcal{C}_i(\mu_b) = \sum_j \left[U(\mu_b, \mu_0) \right]_{ij} \mathcal{C}_j(\mu_0)$$

next-to-next-to-leading-logarithm (N²LL) result

- ▶ resums large logarithms $\alpha_s^n \ln^m(\mu_b/\mu_0), 2 \ge n m \ge 0$
- electroweak corrections start to play important role [Bobeth/Gorbahn/Stamou 1311.1348]
- C_{10} matching now computed to α_s^2

```
[Hermann/Misiak/Steinhauser 1311.1347]
```

Overview of Exclusive $b \to s \ell^+ \ell^-$ Decays

Wilson coefficients and amplitudes

at $\mu = 4.2 \,\mathrm{GeV}$ to NNLL accuracy

typically, the $b \to s \ell^+ \ell^-$ decay amplitudes looks like

$$\mathcal{A} \propto \left[\mathcal{C}_9 \pm \mathcal{C}_{10} + \frac{2m_b^2}{q^2} \frac{F_T(q^2)}{F(q^2)} \mathcal{C}_7 \right] F(q^2) + \left[\mathcal{C}_2 - \frac{\mathcal{C}_1}{6} \right] F_{\bar{c}c} \dots$$

with hadronic matrix elements, F, F_T and $F_{\bar{c}c}$ schematically:

Comparison of Exclusive Decays

decay	# kin. variables	# hadr. matr. elem.†	sensitivity
$B_s \to \ell^+ \ell^-$	0	1 constant	$\mathcal{C}_{10(')}$
$B \to K \ell^+ \ell^-$	2	1+1 form factors	$\begin{array}{ccc} \mathcal{C}_{7(')}, \mathcal{C}_{9(')}, \mathcal{C}_{10(')} & \leftarrow \end{array}$
$B \to K^* \ell^+ \ell^-$	4	3+3 form factors	$C_{7(')}, C_{9(')}, C_{10(')}$
$\Lambda_b \to \Lambda \ell^+ \ell^-$	4	4+4 form factors	$\mathcal{C}_{7(')}, \mathcal{C}_{9(')}, \mathcal{C}_{10(')} \leftarrow$

- will focus on semileptonic decays
 - ▶ with increasing # of kinematic variables, the # of observables rises (good)
 - however: # of hadronic matrix elements rises too (bad)
- each exclusive decay has its own individual set of hadronic matrix elements
 - ▶ for semileptonic decays with one final statehadron, had. mat. elements are functions of only q²: dilepton mass squared
- †: for naivly factorizing amplitudes

(for semileptonic decays, massless leptons are assumed)

D. van Dyk (Siegen)

- design observables that e.g. probe right-chiral leptons
 - ▶ amplitude A can be decomposed w/ respect to lepton chirality
 - ▶ left-chiral leptons: $A_L \propto C_9 C_{10}$
 - ▶ right-chiral leptons: $A_R \propto C_9 + C_{10} \ll C_{9,10}!$
- several groups working on optimal bases of angular observables, with focus on $B\to K^*\ell^+\ell^-$ decays
- aims
 - reduce form factor uncertainties at low q²: P_i' [Descotes-Genon/Matias/Virto 1303.5794 and references therein]
 - reduce form factor uncertainties at high q^2 : $H_T^{(i)}$

[Bobeth/Hiller/DvD 1212.2321 and references therein]

 extract form factor ratios from data [Bobeth/Hiller/DvD 1006.5013, 1212.2321] all exclusive $b \to s \ell^+ \ell^-$ processes face severe problem of hadronic ($\bar{c}c$) resonances in dilepton spectrum

- hadronic operators give rise to $b \to s\bar{c}c$, hadronizes to $H_b \to X_s \psi(n) [\to \ell^+ \ell^-]$
- systematically include effects via hadronic two-point function $\mathcal{T}(q^2)$

 $C_7 \langle \mathcal{O}_7 \rangle \to \mathcal{T}(q^2)$

- different approaches to obtain $\mathcal{T}(q^2)$, depending on kinematics
- methods and their domain of validity
 - ► small q² ≪ m²_b: QCD-improv. Factorization (QCDF) [Beneke/Feldmann/Seidel hep-ph/0106067 and hep-ph/0412400]
 - ► large q² ≃ m²_b: Operator Product Expansion (OPE) [Grinstein/Piriol hep-ph/0404250, Bevlich/Buchalla/Feldmann 1101.5118]
 - all q²: hadronic dispersion relation (model-dependent) [Khodjamirian et al. 1006.4945, 1211.0234, Lyon/Zwicky 1406.0566]

reviewing these works is another talk; some details in the backups

State of Model-Independent Analysis

[Beaujean/Bobeth/DvD Eur.Phys.J. C74 (2014) 2897 (Err. ibid)]

does not yet include today's preprint by Altmannshofer and Straub

Definition of model-independent for the purpose of this work:

Basis of Operators \mathcal{O}_i

- include as many \mathcal{O}_i beyond SM as needed/as few as possible
- balancing act, test statistically if choice of basis describes data well!

Wilson Coefficients C_i

- treat C_i as uncorrelated, generalized couplings
- · constrain their values from data
- model builders: confront new physics models with constraints

$SM(\nu$ -only)

- fix $\mathcal{C}_{7,9,10}$ to SM values (NNLL)
- fix $C_{7'} = m_s/m_b C_7$, fix $C_{9',10'} = 0$
- fit nuisance parameters, use informative priors
 - ▶ form factors: light-cone sum rules [Khodjamirian/Mannel/Pivovarov/Wang '10]
 - power corrections: power-counting assumptions
 - CKM: tree-level fit [UTfit]
 - quark masses [PDG]

SM Basis

• fix
$$C_{7'} = m_s/m_b C_7$$
, fix $C_{9',10'} = 0$

- fit $C_{7,9,10}$
- fit nuisance parameters, use informative priors
 - ▶ form factors: light-cone sum rules [Khodjamirian/Mannel/Pivovarov/Wang '10]
 - power corrections: power-counting assumptions
 - CKM: tree-level fit [UTfit]
 - quark masses [PDG]

SM+SM' Basis

- fit $C_{7,9,10}$
- fit $C_{7',9',10'}$
- fit nuisance parameters, use informative priors
 - ▶ form factors: light-cone sum rules [Khodjamirian/Mannel/Pivovarov/Wang '10]
 - power corrections: power-counting assumptions
 - CKM: tree-level fit [UTfit]
 - quark masses [PDG]

Wilson coefficients							
	$\mathcal{C}_{7(')}$	$\mathcal{C}_{9(')}$	$\mathcal{C}_{10(')}$	93 individual measurements	experiments		
$B_s \to \mu^+ \mu^-$	_	-	\checkmark	CP-avg. time-int. BR	CMS,LHCb		
$B \to X_s \gamma$	\checkmark	-	-	CP-avg. BR	BaBar,Belle,CLEO		
$B \to X_s \ell^+ \ell^-$	\checkmark	\checkmark	\checkmark	CP-avg. BR	BaBar,Belle		
$B \to K^* \gamma$	\checkmark	-	-	CP-avg. BR + 2 time-dep. CP asymm.	BaBar,Belle,CLEO		
$B \to K^* \ell^+ \ell^-$	\checkmark	\checkmark	\checkmark	CP-avg. BR + 7 angular observables	ATLAS,BaBar,Belle,CDF,CMS,LHCb		
$B \to K \ell^+ \ell^-$	\checkmark	\checkmark	\checkmark	CP-avg. BR	BaBar,Belle,CDF,LHCb		

Form factors

- interplay between $B \to X_s\{\gamma, \ell^+\ell^-\}$ and $B \to K^*\{\gamma, \ell^+\ell^-\}$
- some $B \to K^* \ell^+ \ell^-$ obs. form-factor insensitive by construction
- some $B \to K^* \ell^+ \ell^-$ obs. dominantly sensitive to form factor ratios

Further Theory Constraints

Form factors from lattice QCD (LQCD)

- $B \to K$ form factors available from LQCD
 - data only at high q^2 : $17 23 \,\mathrm{GeV}^2$
 - no data points given
- reproduce 3 data points from *z*-parametrization
 - ▶ $q^2 \in \{17, 20, 23\} \, \mathrm{GeV}^2$
 - use as constraint, incl. covariance matrix

$B \to K^*$ Form factor (FF) relation at $q^2 = 0$

• FF $V, A_1 \propto \xi_\perp + \dots$ [Charles et al. hep-ph/9901378]

 \blacktriangleright no $lpha_s$ corrections [Burdmann/Hiller hep-ph/0011266, Beneke/Feldmann hep-ph/0008255]

- Large Energy Limit: $V(0) = (1.33 \pm 0.4) \times A_1(0)$
- LCSR constraint: $\xi_{\parallel}(0) = 0.10^{+0.03}_{-0.02}$, to avoid $\xi_{\parallel}(q^2) \propto A_0(q^2) < 0$.
- see also FF fits by [Hambrock/Hiller/Schacht/Zwicky 1308.4379]

D. van Dyk (Siegen)

Exclusive $b \to s\ell^+\ell^-$

[HPQCD arxiv:1306.2384]

The $B \to K^* \ell^+ \ell^-$ "Anomaly"

- LHCb measurement [1308.1707]
 - ▶ not considering data at $6 \,\mathrm{GeV}^2 \le q^2 \le 14 \,\mathrm{GeV}^2$
 - ► deviation from SM prediction in form factor-free obs. (P'₅)_[1,6]
 - LHCb uses one SM prediction (DGHMV)

[Descotes-Genon/Hurth/Matias/Virto 1303.5794]

- however: further SM prediction exist, much larger uncertainty (JC) [Jäger/Camalich 1212.2263]
- our take on SM prediction $\langle P'_5 \rangle_{[1,6]} = -0.34^{+0.09}_{-0.08}$ (BBvD) however, also consider later slides

difference: treatment of unknown power corrections (form factor corrections, $\bar{c}c$ resonances)

D. van Dyk (Siegen)

Exclusive $b \to s\ell^+\ell^-$

Goodness of fit

- largest pulls at best-fit point
 - $-3.4\sigma~\langle F_L
 angle_{[1,6]}$, BaBar 2012
 - $-2.5\sigma~\langle F_L
 angle_{[1,6]}$, ATLAS 2013
 - $-2.4\sigma~\langle P_4'
 angle_{[14.18,16]}$, LHCb 2013
- obtain p value of 0.12

 $\begin{array}{l} +2.6\sigma \ \ \langle \mathcal{B}\rangle_{[16,19.21]} \text{, Belle 2009} \\ +2.1\sigma \ \ \langle A_{\mathsf{FB}}\rangle_{[16,19]} \text{, ATLAS 2013} \end{array}$

Summary

- good fit, no New Physics signal
- · we find power corrections on top of QCDF results at large recoil

Parametrization of Power Corrections @ Large Recoil

• six parameters $\zeta_{\chi}^{L(R)}$ for the [1,6] bin

 $A_{\chi}^{L(R)}(q^2) \mapsto \zeta_{\chi}^{L(R)} A_{\chi}^{L(R)}(q^2) \,, \quad \chi = \bot, \parallel, 0$

on top of QCDF correction to transversity amplitudes

- tension diluted by parameters $\zeta_{\chi}^{L(R)}$
- shift by $\simeq -20\%$ for $\zeta_{\perp,\parallel}^L$
- shift by $\simeq +10\%$ for ζ_0^L
- few percents for ζ_{χ}^R

improved understanding of power corrections desirable

Exclusive $b \to s\ell^+\ell^-$

Results (SM Basis)

♦: Standard Model, ×: best-fit point red-shaded areas: regions of 68%, 95%, 99% prob., full dataset blue solid lines: regions of 68%, 95%, 99% prob., selection

post HEP'13 (selection)

- with $B \to X_s\{\gamma, \ell^+ \ell^-\}$
- $B_s \rightarrow \mu^+ \mu^-$ from LHCb and CMS
- same data as

[Descotes-Genon/Matias/Virto 1307.5683] exclusive decays limited:

• only
$$B \to K^* \ell^+ \ell^-!$$

- only LHCb data!
- ▶ only $q^2 \in [1, 6] \text{GeV}^2$
- best-fit point similar to

[Descotes-Genon et al. 1307.5683]

• less tension, only $\sim 2.5\sigma$

$$\blacktriangleright \quad \mathcal{C}_9 - \mathcal{C}_9^{\rm SM} \simeq -1.7 \pm 0.7$$

D. van Dyk (Siegen)

Exclusive $b \to s\ell^+\ell^-$

Results (SM Basis)

♦: Standard Model, ×: best-fit point red-shaded areas: regions of 68%, 95%, 99% prob., full dataset blue solid lines: regions of 68%, 95%, 99% prob., selection

post HEP'13 (full)

- SM-like uncertainty reduced by ~ 2 compared to 2012
- SM at the border of 1σ
- flipped-sign barely allowed at 1σ (26% of evidence)
- cannot confirm NP findings

• in $(\mathcal{C}_7, \mathcal{C}_9)$

[Descotes-Genon et al. 1307.5683]

- $\zeta_{\chi}^{L(R)}$ as in SM(ν -only)
- p value: 0.12 (@SM-like sol.)

Results (SM+SM' Basis)

♦: Standard Model, ×: best-fit points,

(light-) red: 68% CL (95% CL) for full dataset

- four solutions A' through D'
 - A' = SM like, 37% of ev.
 - ▶ $D' = SM \leftrightarrow SM'$, 34% of ev.
 - ▶ B', C' suppressed: 14% and 15% of evidence

- for A' (SM-like sol.)
 - ▶ p value 0.07
 - $C_9 C_9^{\rm SM} = -0.8 \pm 0.4$
 - ▶ 1.8σ deviation from SM
 - ζ^{L(R)} decrease wrt.
 SM(ν-only) and SM basis

- model comparison using Bayes factor
 - compare scenarios only at SM-like solution A(')
 - adjust priors to contain only A(')
- results
 - ► SM(*ν*-only) wins over SM basis: odds of 48:1 (43:1 with lattice inputs)
 - ► SM(*ν*-only) wins over SM+SM' basis: odds of 401:1 (143:1 with lattice inputs)
 - ▶ SM(ν -only) draws against highly-spec. scenario where NP only enters $C_{9(9')}$

Development: $\Lambda_b \to \Lambda(\to N\pi)\ell^+\ell^-$

[based on Böer/Feldmann/DvD 1410.2115]

pro arguments, sorted from weakest to strongest

 independent confirmation of results: same b → sℓ⁺ℓ⁻ operators, different hadronic matrix elements

- independent confirmation of results: same b → sℓ⁺ℓ⁻ operators, different hadronic matrix elements
- $\Gamma_{\Lambda} \simeq 2.5 \cdot 10^{-6}$ eV: small width approximation fully applicable (compare $B \to K \pi \ell^+ \ell^-$ where non-res. *P*-wave contributions are unconstrained)

- independent confirmation of results: same b → sℓ⁺ℓ⁻ operators, different hadronic matrix elements
- $\Gamma_{\Lambda} \simeq 2.5 \cdot 10^{-6}$ eV: small width approximation fully applicable (compare $B \to K \pi \ell^+ \ell^-$ where non-res. *P*-wave contributions are unconstrained)
- fewer hadronic matrix elements (2 in HQET limit, 1 in SCET limit)

- independent confirmation of results: same b → sℓ⁺ℓ⁻ operators, different hadronic matrix elements
- $\Gamma_{\Lambda} \simeq 2.5 \cdot 10^{-6}$ eV: small width approximation fully applicable (compare $B \to K \pi \ell^+ \ell^-$ where non-res. *P*-wave contributions are unconstrained)
- fewer hadronic matrix elements (2 in HQET limit, 1 in SCET limit)
- doubly weak decay: complementary constraints on $b \to s\ell^+\ell^-$ physics with respect to $B \to K^*\ell^+\ell^-$

Kinematics and Decay Topology

Exclusive $b \to s\ell^+\ell^-$

$\Lambda_b \rightarrow \Lambda$ Hadronic Matrix Elements

In General

• using (overall 10) helicity form factors (FFs) [compare Feldmann/Yip 1111.1844]

```
schematically: \varepsilon^{\dagger}(\lambda) \cdot \langle \Lambda | \Gamma | \Lambda_b \rangle \sim f_{\lambda}^{\Gamma}(q^2)
```

- for lepton mass $m_\ell \rightarrow 0$ this reduces to 8 independent FFs
- results for all FFs expected from the lattice in the long run

Within HQET

- heavy quark spin symmetry reduces matrix elements to 2 FFs at leading power
- known from Lattice QCD [Detmold/Lin/Meinel/Wingate 1212.4827]

Within SCET

```
applicable when E_{\Lambda} = O(m_b)
```

- matrix elements reduce further to 1 single FF
- estimates from SCET sum rules [Feldmann/Yip 1111.1844]

D. van Dyk (Siegen)

Exclusive $b \to s\ell^+\ell^-$

- $\Lambda \rightarrow N\pi$ is a parity-violating weak decay
- branching fraction ${\cal B}[\Lambda o N\pi] = (99.7 \pm 0.1)\%$ [PDG, our naive average]
- equations of motions reduce independent matrix elements to 2
- we choose to express them through
 - decay width Γ_Λ
 - parity-violating coupling α
- within small width approximation, Γ_Λ cancels
- α well known from experiment: $\alpha_{p\pi^-} = 0.642 \pm 0.013$ [PDG average]

we define the angular distribution as

$$\frac{8\pi}{3} \frac{\mathrm{d}^4 \Gamma}{\mathrm{d}q^2 \operatorname{d}\cos\theta_\ell \operatorname{d}\cos\theta_\Lambda \operatorname{d}\phi} \equiv K(q^2, \cos\theta_\ell, \cos\theta_\Lambda, \phi)$$

when considering only SM and chirality-flipped operators

$$K = 1 \begin{pmatrix} K_{1ss} \sin^2 \theta_{\ell} + K_{1cc} \cos^2 \theta_{\ell} & + K_{1c} \cos \theta_{\ell} \end{pmatrix} + \cos \theta_{\Lambda} \begin{pmatrix} K_{2ss} \sin^2 \theta_{\ell} + K_{2cc} \cos^2 \theta_{\ell} & + K_{2c} \cos \theta_{\ell} \end{pmatrix} + \sin \theta_{\Lambda} \sin \phi \begin{pmatrix} K_{3sc} \sin \theta_{\ell} \cos \theta_{\ell} + K_{3s} \sin \theta_{\ell} &) \end{pmatrix} + \sin \theta_{\Lambda} \cos \phi \begin{pmatrix} K_{4sc} \sin \theta_{\ell} \cos \theta_{\ell} + K_{4s} \sin \theta_{\ell} &) \end{pmatrix}$$

no further observables possible up to mass-dimension six $K_n \equiv K_n(q^2)$

Angular Observables

matrix elements parametrized through 8 transversity amplitudes A^λ_{XM}

$$A^R_{\perp_1}, A^R_{\parallel_1}, A^R_{\perp_0}, A^R_{\parallel_0}$$
, and $(R \leftrightarrow L)$

- λ dilepton chirality
- χ transversity state, similar as in $B \to K^* \ell^+ \ell^-$
- M |third component| of dilepton angular momentum

Angular Observables

matrix elements parametrized through 8 transversity amplitudes A^λ_{χM}

$$A^R_{\perp_1}, A^R_{\parallel_1}, A^R_{\perp_0}, A^R_{\parallel_0}$$
, and $(R \leftrightarrow L)$

- λ dilepton chirality
- χ transversity state, similar as in $B \to K^* \ell^+ \ell^-$

.

- M |third component| of dilepton angular momentum
- express angular observables through transversity amplitudes, e.g.

$$K_{1cc} = \frac{1}{2} \left[|A_{\perp_1}^R|^2 + |A_{\parallel_1}^R|^2 + (R \leftrightarrow L) \right]$$
$$K_{2c} = \frac{\alpha}{2} \left[|A_{\perp_1}^R|^2 + |A_{\parallel_1}^R|^2 - (R \leftrightarrow L) \right]$$

full list in the backups

D. van Dyk (Siegen)

$$\Gamma = 2K_{1ss} + K_{1cc}$$

define further observables X as weighted (ω_X) integrals

$$X = \frac{1}{\Gamma} \int \frac{\mathrm{d}^3 \Gamma}{\mathrm{d} \cos \theta_\ell \, \mathrm{d} \cos \theta_\Lambda \, \mathrm{d} \phi} \omega_X(\cos \theta_\ell, \cos \theta_\Lambda, \phi) \mathrm{d} \cos \theta_\ell \, \mathrm{d} \cos \theta_\Lambda \, \mathrm{d} \phi$$

A leptonic forward-backward asymmetry

$$A_{\rm FB}^{\ell} = \frac{3}{2} \frac{K_{1c}}{2K_{1ss} + K_{1cc}} \qquad \text{with } \omega_{A_{\rm FB}^{\ell}} = \operatorname{sign} \cos \theta_{\ell}$$

$$\Gamma = 2K_{1ss} + K_{1cc}$$

define further observables X as weighted (ω_X) integrals

$$X = \frac{1}{\Gamma} \int \frac{\mathrm{d}^3 \Gamma}{\mathrm{d} \cos \theta_\ell \, \mathrm{d} \cos \theta_\Lambda \, \mathrm{d} \phi} \omega_X(\cos \theta_\ell, \cos \theta_\Lambda, \phi) \mathrm{d} \cos \theta_\ell \, \mathrm{d} \cos \theta_\Lambda \, \mathrm{d} \phi$$

A leptonic forward-backward asymmetry

$$A_{\rm FB}^\ell = \frac{3}{2} \frac{K_{1c}}{2K_{1ss} + K_{1cc}} \qquad \text{with } \omega_{A_{\rm FB}^\ell} = {\rm sign}\cos\theta_\ell$$

B fraction of longitudinal dilepton pairs

$$F_0 = \frac{2K_{1ss} - K_{1cc}}{2K_{1ss} + K_{1cc}} \qquad \text{with } \omega_{F_0} = 2 - 5\cos^2\theta_\ell$$

$$\Gamma = 2K_{1ss} + K_{1cc}$$

define further observables X as weighted (ω_X) integrals

$$X = \frac{1}{\Gamma} \int \frac{\mathrm{d}^3 \Gamma}{\mathrm{d} \cos \theta_\ell \, \mathrm{d} \cos \theta_\Lambda \, \mathrm{d} \phi} \omega_X(\cos \theta_\ell, \cos \theta_\Lambda, \phi) \mathrm{d} \cos \theta_\ell \, \mathrm{d} \cos \theta_\Lambda \, \mathrm{d} \phi$$

C hadronic forward-backward asymmetry

$$A_{\rm FB}^{\Lambda} = \frac{1}{2} \frac{2K_{2ss} + K_{2cc}}{2K_{1ss} + K_{1cc}} \qquad \text{with } \omega_{A_{\rm FB}^{\ell}} = \operatorname{sign} \cos \theta_{\Lambda}$$

$$\Gamma = 2K_{1ss} + K_{1cc}$$

define further observables X as weighted (ω_X) integrals

$$X = \frac{1}{\Gamma} \int \frac{\mathrm{d}^3 \Gamma}{\mathrm{d} \cos \theta_\ell \, \mathrm{d} \cos \theta_\Lambda \, \mathrm{d} \phi} \omega_X(\cos \theta_\ell, \cos \theta_\Lambda, \phi) \mathrm{d} \cos \theta_\ell \, \mathrm{d} \cos \theta_\Lambda \, \mathrm{d} \phi$$

C hadronic forward-backward asymmetry

$$A_{\rm FB}^{\Lambda} = \frac{1}{2} \frac{2K_{2ss} + K_{2cc}}{2K_{1ss} + K_{1cc}} \qquad \text{with } \omega_{A_{\rm FB}^{\ell}} = \operatorname{sign} \cos \theta_{\Lambda}$$

D combined forward-backward asymmetry

$$A_{\rm FB}^{\ell\Lambda} = \frac{3}{4} \frac{K_{2c}}{2K_{1ss} + K_{1cc}} \qquad \text{with } \omega_{A_{\rm FB}^{\ell}} = \operatorname{sign} \cos \theta_{\Lambda} \, \operatorname{sign} \cos \theta_{\ell}$$

D. van Dyk (Siegen)

Exclusive $b \to s\ell^+\ell^-$

- existing constraints
 - ρ_1^{\pm} blue banded constraints
 - insensitive (not shown) ρ_2
- new constraints
 - ρ_3^- purple banded constraints
 - $\rho_{\rm A}$ gold hyperbolic constraint

Development: Charmonium Resonances in $B \to K \ell^+ \ell^-$

Experimental Situation

- in 2013 LHCb announced observation of a resonance beyond $\psi(3770)$ in dilepton spectrum of $B^+ \rightarrow K^+ \mu^+ \mu^-$ [LHCb 1307.7595]
- to paraphrase Douglas Adams:

"this made a lot of people very irritated and has been widely regarded as a bad move" experiment performed **model-dependent** decomposition

- theory side did never claim absence of resonances in low recoil region
 - LHCb's non-resonant curve \neq OPE prediction
- same resonances as in $e^+e^- \rightarrow hadrons$ expected in $B \rightarrow K^{(*)}\ell^+\ell^-$ spetrum

Known Charmonia with $J^P = 1^-$

D. van Dyk (Siegen)

Exclusive $b \to s\ell^+\ell^-$

13.11.2014 40 / 43

Known Charmonia with $J^P = 1^-$

40 / 43

- where are the other resonances beside $\psi(4160)$?
- to what extent is quark-hadron duality violated?
 - ▶ $B \to K^* \ell^+ \ell^-$ to the rescue!
 - what is the value of $H_T^{(1)}$?
 - ▶ what is the value of S₇?
- can we learn more about the q^2 spectrum when combining exclusive $b \to s \ell^+ \ell^-$ data?

Conclusion

- exclusive $b \to s\ell^+\ell^-$ decays are interesting channels to probe for new physics effects and to simultaneously understand "old physics"
- data has become very precise; we have already started to infer hadronic physics from data
 - ► however: disentangling right-handed currents from $\bar{c}c$ contributions will be difficult
- measurements in the decay channel $\Lambda_b \to \Lambda(\to N\pi)\ell^+\ell^-$ will be helpful
 - will offer novel types of new physics constraints
 - on account of different hadronic matrix element, it will either confirm or challenge the current results offered in the mesonic decay channels
- increasing precision in $B\to K\ell^+\ell^-$ will need to be met by further understanding of the charmonium spectrum
 - ▶ we might need to reconsider *modelling* the spectrum
- not discussed:

 $\blacktriangleright \ B \to K \pi \ell^+ \ell^- \ \text{[Das/Jung/Hiller/Shires 1406.6681]}, \ B_s \to \phi \ell^+ \ell^-, \ldots$

Backup Slides

QCD Factorization (QCDF) + Soft Collinear Effective Theory (SCET)

- calculate $\bar{q}q$ loops perturbatively, expand in $1/m_b$, $1/E_{K^*}$
- relate matrix elements to universal hadronic quantities:
 - Light Cone Distribution Amplitudes (LCDAs)
 - form factors
 - decay constants

[Beneke/Feldmann '00, Beneke/Feldmann/Seidel '01 & '04]

Light Cone Sum Rules (LCSR)

- calculate $\langle \bar{c}c \rangle$, $\langle \bar{c}cG \rangle$ on the light cone for $q^2 \ll 4m_c^2$
- achieves resummation of soft gluon effects
- use analycity of amplitude to relate results to $q^2 < M_{\psi'}^2$
- uses many of the same inputs as QCDF+SCET

QCD Factorization (QCDF) + Soft Collinear Effective Theory (SCET)

- calculate $\bar{q}q$ loops perturbatively, expand in $1/m_b$, $1/E_{K^*}$
- relate matrix elements to universal hadronic quantities:
 - Light Cone Distribution Amplitudes (LCDAs)
 - form factors
 - decay constants

[Beneke/Feldmann '00, Beneke/Feldmann/Seidel '01 & '04]

Combination of QCDF+SCET and LCSR Results

- not yet!
 - ▶ no studies yet to find impact on optimized observables at large recoil!
 - LCSR results are not included in following discussion

Operators

- k = 3 form factors, α_s corrections known, absorbed into effective Wilson coefficients $C_{7,9} \rightarrow C_{7,9}^{\text{eff}}$
- k = 4 absent

 $k = 5 \ \Lambda^2/m_b^2 \sim 2\%$ corrections, first new had. matrix elements explicitly: < 1% for $a^2 = 15 \text{GeV}^2$ [Bevlich/Buchalla/Feldmann] Exclusive $b \rightarrow s \ell^+ \ell^-$ [3.11.2014 46/43]

$\Lambda_b \to \Lambda(\to N\pi)\ell^+\ell^-$ Angular Observables

$$\begin{split} &K_{1ss} = \frac{1}{4} \Big[|A_{\perp_1}^R|^2 + |A_{\parallel_1}^R|^2 + 2|A_{\perp_0}^R|^2 + 2|A_{\parallel_0}^R|^2 + (R \leftrightarrow L) \Big] \\ &K_{1cc} = \frac{1}{2} \Big[|A_{\perp_1}^R|^2 + |A_{\parallel_1}^R|^2 + (R \leftrightarrow L) \Big] \\ &K_{1c} = -\operatorname{Re} \left(A_{\perp_1}^R A_{\parallel_1}^{*R} - (R \leftrightarrow L) \right) \\ &K_{2ss} = -\frac{\alpha}{2} \operatorname{Re} \left(A_{\perp_1}^R A_{\parallel_1}^{*R} + 2A_{\perp_0}^R A_{\parallel_0}^{*R} + (R \leftrightarrow L) \right) \\ &K_{2cc} = -\alpha \operatorname{Re} \left(A_{\perp_1}^R A_{\parallel_1}^{*R} + (R \leftrightarrow L) \right) \\ &K_{2cc} = \frac{\alpha}{2} \Big[|A_{\perp_1}^R|^2 + |A_{\parallel_1}^R|^2 - (R \leftrightarrow L) \Big] \\ &K_{3sc} = -\frac{\alpha}{\sqrt{2}} \operatorname{Im} \left(A_{\perp_1}^R A_{\perp_0}^{*R} - A_{\parallel_1}^R A_{\parallel_0}^{*R} + (R \leftrightarrow L) \right) \\ &K_{3sc} = -\frac{\alpha}{\sqrt{2}} \operatorname{Im} \left(A_{\perp_1}^R A_{\parallel_0}^{*R} - A_{\parallel_1}^R A_{\perp_0}^{*R} + (R \leftrightarrow L) \right) \\ &K_{4sc} = \frac{\alpha}{\sqrt{2}} \operatorname{Re} \left(A_{\perp_1}^R A_{\parallel_0}^{*R} - A_{\parallel_1}^R A_{\parallel_0}^{*R} - (R \leftrightarrow L) \right) \\ &K_{4ss} = \frac{\alpha}{\sqrt{2}} \operatorname{Re} \left(A_{\perp_1}^R A_{\parallel_0}^{*R} - A_{\parallel_1}^R A_{\perp_0}^{*R} - (R \leftrightarrow L) \right) \end{split}$$

D. van Dyk (Siegen)

$$\begin{aligned} A_{\perp_{1}}^{L(R)} &= -2NC_{+}^{L(R)}f_{\perp}^{V}\sqrt{s_{-}} & A_{\parallel_{1}}^{L(R)} &= +2NC_{-}^{L(R)}f_{\perp}^{A}\sqrt{s_{+}} \\ A_{\perp_{0}}^{L(R)} &= +\sqrt{2}NC_{+}^{L(R)}f_{0}^{V}\frac{m_{\Lambda_{b}}+m_{\Lambda}}{\sqrt{q^{2}}}\sqrt{s_{-}} & A_{\parallel_{0}}^{L(R)} &= -\sqrt{2}NC_{-}^{L(R)}f_{0}^{A}\frac{m_{\Lambda_{b}}-m_{\Lambda}}{\sqrt{q^{2}}}\sqrt{s_{-}} \end{aligned}$$

with
$$s_{\pm} = (m_{\Lambda_b} \pm m_{\Lambda})^2 - q^2$$

 $C_{\pm}^{R(L)} = \left((\mathcal{C}_9 + \mathcal{C}_{9'}) + \frac{2\kappa m_b m_{\Lambda_b}}{q^2} (\mathcal{C}_7 + \mathcal{C}_{7'}) \pm (\mathcal{C}_{10} + \mathcal{C}_{10'}) \right)$
 $C_{\pm}^{R(L)} = \left((\mathcal{C}_9 - \mathcal{C}_{9'}) + \frac{2\kappa m_b m_{\Lambda_b}}{q^2} (\mathcal{C}_7 - \mathcal{C}_{7'}) \pm (\mathcal{C}_{10} - \mathcal{C}_{10'}) \right)$

 κ as in [Grinstein/Pirjol hep-ph/0404250]

D. van Dyk (Siegen)

when
$$q^2 = O\left(m_b^2\right)$$

$$\begin{split} \rho_1^{\pm} &= |\mathcal{C}_{79} \pm \mathcal{C}_{7'9'}|^2 + |\mathcal{C}_{10} \pm \mathcal{C}_{10'}|^2 \\ \rho_2 &= \operatorname{Re} \left(\mathcal{C}_{79} \mathcal{C}_{10}^* - \mathcal{C}_{7'9'} \mathcal{C}_{10'}^* \right) - i \operatorname{Im} \left(\mathcal{C}_{79} \mathcal{C}_{7'9'}^* + \mathcal{C}_{10} \mathcal{C}_{10'}^* \right) \\ \rho_3^{\pm} &= 2 \operatorname{Re} \left(\left(\mathcal{C}_{79} \pm \mathcal{C}_{7'9'} \right) (\mathcal{C}_{10} \pm \mathcal{C}_{10'})^* \right) \\ \rho_4 &= \left(|\mathcal{C}_{79}|^2 - |\mathcal{C}_{7'9'}|^2 + |\mathcal{C}_{10}|^2 - |\mathcal{C}_{10'}|^2 \right) - i \operatorname{Im} \left(\mathcal{C}_{79} \mathcal{C}_{10'}^* - \mathcal{C}_{7'9'} \mathcal{C}_{10}^* \right) \;. \end{split}$$