The Benefits of $\bar{B} \rightarrow \bar{K}^* \ell^+ \ell^-$ at Low Recoil

Danny van Dyk

technische universität dortmund

iNExT Workshop, University of Sussex September 2010

based on arxiv:1006.5013 [hep-ph] \rightarrow JHEP07(2010)098

Large Recoil $q^2 \ll m_b^2$

 $q^2 \simeq m_b^2$ Low Recoil

C.Bobeth,G.Hiller,DvD '10

$${\cal A}_{
m FB}(B o {\cal K}^* \ell^+ \ell^-), \ell = e, \mu$$
 in the SM

SM Result for $A_{\rm FB}$

Exp. Data: BaBar'08, Belle'09, CDF'09

Large Recoil $q^2 \ll m_b^2$

 $q^2 \simeq m_h^2$ Low Recoil

C.Bobeth,G.Hiller,DvD '10

Low Recoil Framework for $\bar{B} \to \bar{K}^* \ell^+ \ell^-$

developed by B.Grinstein, D.Pirjol '04

Improved Isgur-Wise Form Factor Relations

► relate dipole form factors T_i, i = 1,2,3 to vector/axial vector form factors V, A₁, A₂

- $T_i \sim \langle K^* | \sigma_{\mu\nu} | B
 angle$ $V, A_i \sim \langle K^* | \gamma_\mu | B
 angle$
- reduce number of QCD form factors: $7 \rightarrow 4$

Expand in $1/O(m_b)$

- relate QCD currents to Heavy Quark Effective Theory (HQET) currents
- expand HQET operators in $1/Q, Q = m_b, \sqrt{q^2}$

Result

- systematic approach, model independent
- ▶ amplitudes incl. corrections of order $m_c^2/Q^2, \alpha_s, \ Q = m_b, \sqrt{q^2}$
- $\Lambda_{
 m QCD}/m_b$ corrections parametrically suppressed

Observables at Low Recoil (I)

- ▶ all observables can be expressed in terms of transversity amplitudes (TAs): A^a_i, i = K^{*} polarization, a = L, R
- at Low Recoil the short distance contributions factorize at LO:

$$A_i^a = \mathbf{f}_i \times \rho^a$$

- *f_i* contain long distance (LD) contributions only
- $\rho^{L,R}$ contain short distance (SD) coefficients C_i only
- 6 TAs, but only 2 combinations of SD coefficients and multitude of observables
- \blacktriangleright \Rightarrow system is heavily overconstrained by observables
- \blacktriangleright \Rightarrow reduced complexity wrt. Large Recoil

Observables at Low Recoil (II)

at Low Recoil, all observables are functions of only two SD coefficients

- decay rate $\mathrm{d}\mathcal{B}/\mathrm{d}q^2\propto
 ho_1 imes$ form factor terms
- ▶ forward-backward asymmetry $A_{\rm FB}(q^2) \propto
 ho_2/
 ho_1 imes$ form factor terms
- fraction F_L(q²) of longitudinally polarized K* is independent of SD coefficients at leading order! Tests form factors.

all of these have been measured by BaBar ('06,'08), Belle ('09) and CDF ('09-'10).

New Precision Observables at Low Recoil

- form factors are biggest source of theoretical uncertainties
- construct observables which are independent of form factors, e.g.

$$H_T^{(2)} = \frac{\sqrt{2}J_4}{\sqrt{-J_2^c(2J_2^s - J_3)}} = 2\frac{\rho_2}{\rho_1} = \text{SD only}$$

- H⁽²⁾_T provides identical information as A_{FB} ∝ ρ₂/ρ₁ but theoretical uncertainty is much smaller!
- SM prediction at Low Recoil:

$$\begin{split} \langle A_{\rm FB} \rangle &= -0.41 \pm 0.073 \qquad (17\%) \\ \left\langle H_T^{(2)} \right\rangle &= -0.972 \pm 0.010 \qquad (1\%) \\ H_T^{(1,2,3)} \text{ not measured yet, probably need full angular analysis!} \\ &\Rightarrow \text{LHCb, SuperBelle volunteers wanted!} \end{split}$$

Danny van Dyk (TU Dortmund)

 $\bar{B} \rightarrow \bar{K}^* \ell^+ \ell^-$ @ Low Recoil

Model Independent Analysis

$$\mathcal{H}^{\text{eff}} = -\frac{4G_{\text{F}}}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i C_i(\mu) \mathcal{O}_i(\mu) + O\left(V_{ub} V_{us}^*\right)$$

$$\mathcal{O}_7 \propto [\bar{s}\sigma_{\mu\nu}P_Rb]F^{\mu\nu}$$
 $\mathcal{O}_{9(10)} \propto [\bar{s}\gamma_{\mu}P_Lb][\bar{\ell}\gamma^{\mu}(\gamma_5)\ell]$

- calculate long distance physics via operators $O_i(\mu = m_b)$
- treat $C_i(\mu = m_b)$ as free parameters, i = (7), 9, 10
- search for best fit-solutions in the C_i parameter space
- ▶ $|C_7|$ constrained by existing $\mathcal{B}(b \to s\gamma)$ data: $|C_7| \simeq |C_7^{SM}|$
- fit $C_{9,10}$ from existing $B \to K^* \ell^+ \ell^-$ and $B \to X_s \ell^+ \ell^-$ data

Model Independent Analysis – Constraining Power

only two types of constraints at Low Recoil:

- ▶ decay rate constrains **radius** in $C_9 C_{10}$ plane
- ▶ FB-asymmetry constrains **polar angle** in $C_9 C_{10}$ plane
- complementary constraints from a single decay

Model Independent Analysis – Large Recoil + Inclusive Constraints

 C_{0} vs C_{10} . Green square marks the SM.

Sources: Belle + CDF data at Large Recoil, and BaBar + Belle data of $\bar{B} o X_s \ell^+ \ell^-$

Danny van Dyk (TU Dortmund)

 $\bar{B} \rightarrow \bar{K}^* \ell^+ \ell^-$ @ Low Recoil

Model Independent Analysis – Global Constraints (incl. Low Recoil)

 C_9 vs C_{10} . Green square marks the SM.

Sources: Belle + CDF data at Large and Low Recoil, and BaBar + Belle data of $\bar{B} o X_s \ell^+ \ell^-$

Danny van Dyk (TU Dortmund)

 $\bar{B} \rightarrow \bar{K}^* \ell^+ \ell^-$ @ Low Recoil

Conclusion and Outlook

Conclusion

- \blacktriangleright calculated observables of $\bar{B}\to \bar{K}^*\ell^+\ell^-$ at Low Recoil
- increased usage of available (and future) data
- ▶ find stronger and complementary constraints on C_i than from Large Recoil and/or inclusive decays alone
- provides access to form factors via short distance-independent observables

Outlook

► scan for complex valued C_i from CP asymmetries (work in progress, C.Bobeth, G.Hiller, DvD) Literature on this decay includes (amongst others)

- NLO calculation at Large Recoil (M.Beneke, T.Feldmann, D.Seidel '01 and '04): arxiv:hep-ph/0106067 and arxiv:hep-ph/0412400
- Expansion in Λ/Q , $Q = m_b$, $\sqrt{q^2}$ (B.Grinstein, D.Pirjol '04): arxiv:hep-ph/0404250
- Low Recoil observables and model independent analysis (C.Bobeth, G.Hiller, DvD '10): arxiv:1006.5013 [hep-ph]

Outline

Backup Slides

Short Distance Coefficients

 q^2 spectrum + uncertainty of SD coefficients

C.Bobeth,G.Hiller,DvD '10

Danny van Dyk (TU Dortmund)

Lattice Data vs Light Cone Sum Rules

Lattice data sets: D.Becirevic, V.Lubicz, F.Mescia '06

LCSR FF: P.Ball, R.Zwicky '04

C.Bobeth,G.Hiller,DvD '10

Danny van Dyk (TU Dortmund)

SM Values of Wilson Coefficients

Inputs: α_s, m_t, M_W and θ_W at matching scale μ₀ = O(M_W).
At μ = m_b ≃ 4.8 GeV to NNLL:

Short Distance Couplings at Low Recoil

There are only two independent bilinear combinations of the C_i :

$$\begin{split} \rho_1 &= \left| \mathcal{C}_9^{\text{eff}} + \kappa \frac{2m_b m_B}{q^2} \mathcal{C}_7^{\text{eff}} \right|^2 + |\mathcal{C}_{10}|^2 \\ \rho_2 &= \text{Re} \left\{ \left(\mathcal{C}_9^{\text{eff}} + \kappa \frac{2m_b m_B}{q^2} \mathcal{C}_7^{\text{eff}} \right) \mathcal{C}_{10}^* \right\} \end{split}$$

with $\kappa \equiv \kappa(\mu) = 1 + O(\alpha_s^2)$ for $\mu = m_b(m_b)$.

Model Independent Analysis – Individual Constraints

 \mathcal{C}_9 vs $\mathcal{C}_{10}.$ Grey square marks the SM.

C.Bobeth,G.Hiller,DvD '10

Danny van Dyk (TU Dortmund)

Transverse Asymmetries

Transverse asymmetries $A_T^{(i)}$, i = 2, 3, 4

- i = 1 discouraged and i = 2, 3, 4 proposed by U.Egede et al '08
- Tailored for C[']₇ sensitivity at Large Recoil

Large Recoil

O(1), with resonant like structure at/near the zero-crossing of $A_{\rm FB}$.

Low Recoil

Not O(1)! Very different behaviour than at Large Recoil. In the limit $q^2 \rightarrow q_{\max}^2$: $A_T^{(i)} \rightarrow -1, +\infty, 0$ for i = 2, 3, 4, respectively.

$${\it F}_{
m L}({\it B}
ightarrow{\it K}^{st}\ell^+\ell^-),\ell=e,\mu$$

SM Result for $F_{\rm L}$

Exp. Data: BaBar'08, Belle'09, CDF'09

C.Bobeth,G.Hiller,DvD '10