$B \rightarrow D^{*}$ Form Factors from Light-Cone Sum Rules

Nico Gubernari
in collaboration with Ahmet Kokulu and Danny van Dyk

Technische Universität München

Challenges in Semileptonic B Decays
MITP, Mainz
funded by

DFG
Deutsche
Forschungsgemeinschaft

Motivations: why do we need B to D* FFs?

- $\left|V_{c b}\right|$ extraction from branching ratios of $B \rightarrow D^{*} \mu \nu$
- prediction of $R_{D^{*}}$ in the SM , i.e. to constrain NP contributions to $b \rightarrow c l \bar{\nu}$
- LCSRs complement Lattice results and Heavy Quark Expansion relations used in present analyses
- B-LCSRs have $1 / m_{b}$ corrections (related to twist expansion), but there is no $1 / m_{c}$ expansion!
- we present new twist 4 corrections to the $B \rightarrow D^{*}$ LCSRs, higher twists are expected to give corrections only of the order $O\left(1 / m_{b}^{2}\right)$
- $O\left(\alpha_{s}\right)$ corrections are not considered

Light-Cone Sum Rules in a nutshell

- determine products of exclusive hadronic matrix elements from an artificial, less-exclusive, non-local hadronic matrix element $\Pi\left(k^{2}, q^{2}\right)$
- $\Pi\left(k^{2}, q^{2}\right)$ calculable for kinematics that impose light-cone dominance of the non-local operator
- results

$$
\Pi\left(k^{2}, q^{2}\right)=f_{B} m_{B} \int d s \sum_{n, t} \frac{J_{n, t}\left(s, q^{2}\right)}{\left[k^{2}-s\right]^{n}} \phi_{t}(s)
$$

- $J_{n, t}$ can be computed from a hard scattering kernel
- B-meson Light-Cone Distribution Amplitudes (LCDAs) ϕ_{t} are necessary non-perturbative input
- general $B \rightarrow V, B \rightarrow P$ results available
- new insights on LCDAs triggered our revisiting of these sum rule results

Preliminary Results and Comparison

	FKKM2008	GKvD2018		
		NEW Contrib.		
B $\rightarrow \mathbf{D}^{*}$ FF	2pt tw2+3 +3pt	2pt tw2+3	2pt tw4	3pt tw3+4
$A_{1}\left(q^{2}=0\right)$	0.73	0.65	-0.11	$?$
$A_{2}\left(q^{2}=0\right)$	0.66	0.57	-0.21	$?$
$A_{0}\left(q^{2}=0\right)$	0.78	0.70	-0.01	$?$
$A_{0}(0) / A_{1}(0)$	1.07	1.08	+0.21	$?$

[using the same input parameters, with q^{2} the dilepton mass square]
ϕ_{+}, ϕ_{-}2-particle L+NL twist contributions [Faller/Khodjamirian/Klein/Mannel '06] \mathbf{g}_{+}new 2-particle NNL twist contributions [Gubernari/Kokulu/van Dykw.i.p.] ϕ_{3}, ϕ_{4} new and self-consistent 3-particle NL+NNL twist contr.
[Gubernari/Kokulu/van Dyk w.i.p.]

Plans for presentation of results

- we plan to give numerical results for all form factors at $q^{2}=0$ and $q^{2}=-5 \mathrm{GeV}^{2}$
- we consider $q^{2}=+5 \mathrm{GeV}^{2}$ as an additional point, but we will check convergence of the twist expansion first before committing to use it
- we plan to provide correlation matrices across form factors and across q^{2}
- we plan to provide numerical results in machine-readable form - probably JSON/YAML files, similar to what has been done for light-meson LCSRs
- numerical evaluations are carried out with EOS and the code will be made publicly available at https://github.com/eos/eos

Backup slides

Power corrections

- correlator is calculated with on-shell B meson, using its Light-Cone Distribution Amplitudes (LCDAs)
- B-meson LCDAs are defined for bi-local currents involving an HQET field h_{v}
- power corrections to this involve power of the covariant derivative $i D^{\mu}$
- strings of the type $i D^{\mu_{1}} i D^{\mu_{2}} \ldots i D^{\mu_{n}}$ are incorporated in LCDAs of increasing (collinear) twist

Benefits of the Braun et al. basis

- $\phi_{3}, \phi_{4}, \ldots$ are LCDAs of definite collinear twist $3,4, \ldots$
- LCDAs of twists ≥ 5 are expected to contribute beyond the next-to-leading $1 / m_{b}$ corrections!
- inserting a gluon field adds at least one unit of twist
- 2-particle LCDAs start at twist 2, and are included in our results (up to and including twist 4)
- 3-particle LCDAs start at twist 3, and are included in our results (up to and including twist 4)
- 4-particle LCDAs start at twist 4, and are not included in our results
- 4-particle LCDAs have autonomous RG behaviour, do not mix with 3-particle LCDAs

