$B \rightarrow D^*$ Form Factors from Light-Cone Sum Rules

Nico Gubernari

in collaboration with Ahmet Kokulu and Danny van Dyk

Technische Universität München

Challenges in Semileptonic *B* Decays MITP, Mainz

Motivations: why do we need B to D* FFs?

- $|V_{cb}|$ extraction from branching ratios of $B
 ightarrow D^* \mu
 u$
- prediction of R_{D^*} in the SM, i.e. to constrain NP contributions to $b \rightarrow c l \bar{\nu}$
- LCSRs complement Lattice results and Heavy Quark Expansion relations used in present analyses
- B-LCSRs have 1/m_b corrections (related to twist expansion), but there is no 1/m_c expansion!
- we present new twist 4 corrections to the B → D* LCSRs, higher twists are expected to give corrections only of the order O(1/m²_b)
- O(α_s) corrections are not considered

Light-Cone Sum Rules in a nutshell

- determine products of exclusive hadronic matrix elements from an artificial, less-exclusive, non-local hadronic matrix element Π(k², q²)
- Π(k², q²) calculable for kinematics that impose light-cone dominance of the non-local operator
- results

$$\Pi(k^{2}, q^{2}) = f_{B}m_{B} \int ds \sum_{n,t} \frac{J_{n,t}(s, q^{2})}{[k^{2} - s]^{n}} \phi_{t}(s)$$

- $J_{n,t}$ can be computed from a hard scattering kernel
- B-meson Light-Cone Distribution Amplitudes (LCDAs) ϕ_t are necessary non-perturbative input
 - general $B \rightarrow V$, $B \rightarrow P$ results available [Khodjamirian et al. '06 + '08]
 - new insights on LCDAs triggered our revisiting of these sum rule results [Braun/Ji/Manashov '17]

	FKKM2008	GKvD2018		
			NEW Contrib.	
$\textbf{B} \rightarrow \textbf{D}^* \; \textbf{F}\textbf{F}$	2pt tw2+3 +3pt	2pt tw2+3	2pt tw4	3pt tw3+4
$A_1(q^2 = 0)$	0.73	0.65	-0.11	?
$A_2(q^2 = 0)$	0.66	0.57	-0.21	?
$A_0(q^2 = 0)$	0.78	0.70	-0.01	?
$A_0(0)/A_1(0)$	1.07	1.08	+0.21	?

[using the same input parameters, with q^2 the dilepton mass square]

 ϕ_{+}, ϕ_{-} 2-particle L+NL twist contributions [Faller/Khodjamirian/Klein/Mannel '06] \mathbf{g}_{+} new 2-particle NNL twist contributions [Gubernari/Kokulu/van Dyk w.i.p.] ϕ_{3}, ϕ_{4} new and self-consistent 3-particle NL+NNL twist contr. [Gubernari/Kokulu/van Dyk w.i.p.] 3/4

- we plan to give numerical results for all form factors at $q^2 = 0$ and $q^2 = -5 \text{ GeV}^2$
- we consider $q^2 = +5 \text{ GeV}^2$ as an additional point, but we will check convergence of the twist expansion first before committing to use it
- we plan to provide correlation matrices across form factors and across q²
- we plan to provide numerical results in machine-readable form
 - probably JSON/YAML files, similar to what has been done for light-meson LCSRs [Bharucha/Straub/Zwicky '15]
- numerical evaluations are carried out with EOS and the code will be made publicly available at https://github.com/eos/eos

Backup slides

- correlator is calculated with on-shell *B* meson, using its Light-Cone Distribution Amplitudes (LCDAs)
- *B*-meson LCDAs are defined for bi-local currents involving an HQET field h_v
- power corrections to this involve power of the covariant derivative iD^{μ}
- strings of the type *iD^{µ1} iD^{µ2} ... iD^{µn}* are incorporated in LCDAs of increasing (collinear) twist

- ϕ_3 , ϕ_4 , ... are LCDAs of definite collinear twist 3, 4, ...
- LCDAs of twists \geq 5 are expected to contribute beyond the next-to-leading $1/m_b$ corrections! [Braun/Ji/Manashov '17]
- inserting a gluon field adds at least one unit of twist
 - 2-particle LCDAs start at twist 2, and are included in our results (up to and including twist 4)
 - 3-particle LCDAs start at twist 3, and are included in our results (up to and including twist 4)
 - 4-particle LCDAs start at twist 4, and are not included in our results
 - 4-particle LCDAs have autonomous RG behaviour, *do not mix with 3-particle LCDAs*

[Braun/Ji/Manashov '17]