Global fits to $b \rightarrow s\ell\ell$ data

Flavour@TH 2023 – 11/05/2023

Méril Reboud

Based on:

- Gubernari, van Dyk, JV 2011.09813
- Gubernari, Reboud, van Dyk, JV 2206.03797
- Ahmis, Bordone, Reboud 2208.08937
- Gubernari, Reboud, van Dyk, JV 2305.06301

Introduction

- Previously in Flavour@TH 2023:
 - Local and non-local form factors are the main source of uncertainties in $b \rightarrow s\ell\ell$ decays
 - Both follow the same analytic structure:

 The GRvDV parametrization diagonalizes the dispersive bounds:

$$\hat{z}(q^2) = \frac{\sqrt{\hat{t}_{\Gamma} - q^2} - \sqrt{\hat{t}_{\Gamma}}}{\sqrt{\hat{t}_{\Gamma} - q^2} + \sqrt{\hat{t}_{\Gamma}}} \qquad \widehat{\mathcal{H}}(\hat{z}) = \sum_{n=0}^{\infty} \beta_n \, p_n(\hat{z})$$

Orthonormal polynomials of the arc of the unit circle

lm z

t₀

0

t₁

t₊

Méril Reboud - 11/05/2023

Re z

Introduction and Outline

- I will cover three types of global $b \rightarrow s\ell\ell$ fits:
 - The fit of the local form factors using dispersive bounds
 - The fit of the non local contributions charm loops
 - The fit of WET coefficients based on experimental data
- Given the discussion we had so far [esp. during Jonathan's, Paolo's and Martin's talk], I will start with discussing the parametrization in practice with $\Lambda_{b} \rightarrow \Lambda^{*} \ell \ell$

I. The method in practice

Example with $\Lambda_{\rm b} \rightarrow \Lambda(1520)$

- Inputs:
 - LQCD estimates at q² = 16.3 and 16.5 GeV²[Meinel, Rendon '21]
 - no LCSR available

→ use (loose) SCET relations [Descotes-Genon, M. Novoa-Brunet '19]

$$\begin{split} f_{\perp'}(0) &= 0 \pm 0.2 \,, \qquad g_{\perp'}(0) = 0 \pm 0.2 \,, \qquad h_{\perp'}(0) = 0 \pm 0.2 \,, \\ \tilde{h}_{\perp'}(0) &= 0 \pm 0.2 \,, \quad f_{+}(0)/f_{\perp}(0) = 1 \pm 0.2 \,, \quad f_{\perp}(0)/g_{0}(0) = 1 \pm 0.2 \,, \\ g_{\perp}(0)/g_{+}(0) &= 1 \pm 0.2 \,, \quad h_{+}(0)/h_{\perp}(0) = 1 \pm 0.2 \,, \quad f_{+}(0)/h_{+}(0) = 1 \pm 0.2 \,, \end{split}$$

 $O(\alpha_s/\pi, \Lambda_{QCD}/m_b)$

• 14 form factors: **17 parameters (N = 1), 31 parameters (N = 2)**

21 LQCD inputs + 9 SCET relations: **30 constraints**

2 * 14 - 7 endpoint relations at q^2_{max}

EOS

- N = 1 does not give a good fit (p value ~ 0)
- Use an under-constrained fit (N>1) and allows for saturation of the dispersive bound

→ The uncertainties are truncation order independent: increasing the order does not change their size

• Same conclusions were found for $\Lambda_b \rightarrow \Lambda$ form factors [Blake, Meinel, Rahimi, van Dyk '22]

[Ahmis, MR, Bordone '22]

Phenomenology

- Uncertainties are large but under control and systematically improvable
- LHCb analysis confirmed the usual $b \rightarrow s\ell\ell$ tension at low q^2

II. Improved dispersive bounds

• Main idea: Compute the inclusive $e^+e^- \rightarrow \bar{b}s$ cross-section and relate it to the form factors [Bharucha, Feldmann, Wick '10]

Insertion of a scalar, vector or tensor current

+ other diagrams: loops, quark and gluon condensates...

• Usually, the correlator $\Pi^{\mu\nu}_{\Gamma}(q) \equiv i \int d^4x \, e^{iq \cdot x} \, \langle 0 | \mathcal{T} \left\{ J^{\mu}_{\Gamma}(x) J^{\dagger,\nu}_{\Gamma}(0) \right\} | 0 \rangle$

is decomposed as:

$$\Pi_{\Gamma}^{\mu\nu}(q) \equiv \frac{q^{\mu}q^{\nu}}{q^2} \Pi_{\Gamma}^{(J=0)} + \frac{1}{D-1} \left(\frac{q^{\mu}q^{\nu}}{q^2} - g^{\mu\nu}\right) \Pi_{\Gamma}^{(J=1)}$$

• Main idea: Compute the inclusive $e^+e^- \rightarrow \overline{b}s$ cross-section and relate it to the form factors [Bharucha, Feldmann, Wick '10]

Insertion of a scalar, vector or tensor current

+ other diagrams: loops, quark and gluon condensates...

• We suggest the more generic decomposition:

$$\Pi^{\mu\nu}_{\Gamma}(q) \equiv \sum_{\lambda,\lambda'} \epsilon^{\mu}(\lambda) \epsilon^{\nu*}(\lambda') \Pi^{(\lambda,\lambda')}_{\Gamma}(q^2)$$
Polarization vectors

- Main advantage:
 - The OPE calculation is independent of the helicities:

$$\Pi_{\Gamma}^{(J=1)}\big|_{\rm OPE} = \Pi_{\Gamma}^{(0)}\big|_{\rm OPE} = \Pi_{\Gamma}^{(\parallel)}\big|_{\rm OPE} = \Pi_{\Gamma}^{(\perp)}\big|_{\rm OPE}$$

 \rightarrow The calculation of Ref. [Bharucha, Feldmann, Wick '10] still applies!

- Remove spurious correlations between form factors:
 - e.g. A₁ and A₁₂ now fulfill different bounds
 - decorrelate completely $B \rightarrow K$ from $(B \rightarrow K^*, B_s \rightarrow \phi)$

- In equations:
 - This is the bound used in the literature:

- And this is what we propose:

$$\chi_{A}^{(0)}|_{\bar{B}K^{*}} = \frac{\eta^{B \to K^{*}}}{\pi^{2}} \int_{(M_{B} + M_{K^{*}})^{2}}^{\infty} ds \frac{\lambda_{\rm kin}^{1/2}}{s^{2}(s - Q^{2})^{3}} 4M_{B}^{2}M_{K^{*}}^{2} [A_{12}^{B \to K^{*}}|^{2}],$$
$$\chi_{A}^{(\parallel)}|_{\bar{B}K^{*}} = \frac{\eta^{B \to K^{*}}}{8\pi^{2}} \int_{(M_{B} + M_{K^{*}})^{2}}^{\infty} ds \frac{\lambda_{\rm kin}^{1/2}}{s^{2}(s - Q^{2})^{3}} s(M_{B} + M_{K^{*}})^{2} [A_{1}^{B \to K^{*}}|^{2}],$$

Méril Reboud - 11/05/2023

Local form factors fit

- With this framework we perform a **combined fit** of $B \rightarrow K$, $B \rightarrow K^*$ and $B_s \rightarrow \phi$ LCSR and lattice QCD inputs:
 - $B \rightarrow K:$
 - [HPQCD '13 and '22; FNAL/MILC '17]
 - ([Khodjamiriam, Rusov '17]) \rightarrow large uncertainties, not used in the fit
 - $\quad B \to K^*:$
 - [Horgan, Liu, Meinel, Wingate '15]
 - [Gubernari, Kokulu, van Dyk '18] (B-meson LCSRs)
 - $B_{s} \rightarrow \phi:$
 - [Horgan, Liu, Meinel, Wingate '15]
 - [Gubernari, van Dyk, Virto '20] (B-meson LCSRs)
- Baryonic decays should be added, but there are currently only few constraints

Setup

- Bayesian analysis using EOS
- Implementation of the dispersive bound:

To many constraint to perform an under-constrained fit
 → Stability criterion: truncate the series expansion to N = 2, 3, 4 and compare the form factor uncertainties

Setup

- All the samples are considered to be correlated only via the dispersive bounds
- Since $B \rightarrow K$ and $(B \rightarrow K^*, B_s \rightarrow \phi)$ are decoupled, we perform **3 separated fits**
- $B \rightarrow K^*$ and $B_s \rightarrow \phi$ samples are combined with a weighting procedure:

Current-specific weight

$$w^{B \to K^*} = \prod w(r^{B \to K^*}_{\Gamma,\lambda})$$

Results

Main conclusions:

- Fits are very good already at N = 2 (p-values > 77%)
- LCSR and LQCD combine nicely and still dominate the uncertainties
- Progresses in LQCD will eventually make LCSR irrelevant (?)

Saturations

• Saturations are small for N = 2, in agreement with [Bharucha, Feldmann, Wick '10]

Saturations

- The low saturations in $r_{t,\nu}$ and $r_{o,\nu}$ are probably due to large contributions in the baryonic decays, as discussed in the first part of this talk

Méril Reboud - 11/05/2023

Comparison plots

- For comparison purposes I normalize the form factors to our N = 3 best-fit point
- Uncertainties for B → K are now well below 5% in the physical region

Comparison plots

- For comparison purposes I normalize the form factors to our N = 3 best-fit point
- Uncertainties for B → K are now well below 5% in the physical region
- We compare the different values of the truncation order N

Comparison plots

- For comparison purposes I normalize the form factors to our N = 3 best-fit point
- Uncertainties for B → K are now well below 5% in the physical region
- We compare the different values of the truncation order N
- I also add the result of a usual Simplified Series Expansion à la [Bharucha, Feldmann, Wick '10; Bharucha, Straub, Zwicky '15]

$$f(t) = \frac{1}{P(t)} \sum_{k} \tilde{\alpha}_{k} z^{k}(t, t_{0})$$

This is the generic result, namely:

- N = 2 shows a peculiar behaviour
- For N > 2 the uncertainties are stable
- BSZ is a good approximation in the physical range, but underestimates the uncertainties at negative q²

Specific cases

23

 \rightarrow The dispersive bounds stabilizes regions of the phase space with few theory constraints

 \rightarrow This is particularly useful at negative q² to estimate the non-local form factors

Gaussian and non-Gaussian behaviours

- For N = 2, the bounds are not saturated and the parameters follow Gaussian distributions to a good approximation (perplexities > 95%)
- Already at N = 3, distortions of the distribution are clearly visible

Where to find our results

EOS

- All the plots are available here: https://doi.org/10.5281/zenodo.7919635
- We also added
 - the updated posterior distributions for N = 2 in our parametrization and using a SSE as YAML files
 - All the tools/documentation to reproduce our results
- These results are also available in **EOS v1.0.7**:
 - /eos/constraints/B-to-P-P-form-factors.yaml
 - /eos/constraints/B-to-P-P-form-factors.yaml

III. Parametrization of non-local form factors

 \rightarrow I will stick to the conclusions of our paper and defer all discussion to this afternoon's session

Non-local form factors

$$\mathcal{A}_{\lambda}^{L,R}(B \to M_{\lambda}\ell\ell) = \mathcal{N}_{\lambda} \left\{ (C_9 \mp C_{10})\mathcal{F}_{\lambda}(q^2) + \frac{2m_b M_B}{q^2} \left[C_7 \mathcal{F}_{\lambda}^T(q^2) - 16\pi^2 \frac{M_B}{m_b} \mathcal{H}_{\lambda}(q^2) \right] \right\}$$

$$\mathcal{H}_{\mu}(k,q) = i \int d^4x \, e^{iq \cdot x} \langle \bar{M}(k) | T\{\mathcal{J}_{\mu}^{\text{em}}(x), \mathcal{C}_i \mathcal{O}_i\} | \bar{B}(q+k) \rangle$$

- Problematic because they can mimic a BSM signal!
 - \mathcal{H}_{λ} can be interpreted as a shift to C₉ and C₇
 - This shift is lepton-flavour universal (as now seen in the data)
- Notably harder to estimate, no lattice computation so far
- Different parametrizations are suggested

Méril Reboud - 11/05/2023

Theory inputs

 \mathcal{H}_{λ} can still be calculated in **two kinematics regions**:

- Local OPE $|q|^2 \ge m_b^2$ [Grinstein, Piryol '04; Beylich, Buchalla, Feldmann '11]
- Light Cone OPE $q^2 \ll 4m_c^2$ [Khodjamirian, Mannel, Pivovarov, Wang '10]

Analyticity properties

Analyticity properties of the Q_c dependent part:

- Poles due to charmonium state
- Branch cut in the physical range due to on-shell D meson production: $B \rightarrow MD\overline{D}$
- The branch cut in k² makes the coefficients of the zexpansion **complex-valued**

Parametrization of the charm loop

- Still focusing on $B \rightarrow K$, $B \rightarrow K^*$ and $B_s \rightarrow \phi$ Inputs:
 - 4 theory point at negative q² from the light cone OPE
 - Experimental results at the J/ ψ (we keep ψ (2S) for future work)
- Use again an under-constrained fit (N = 5) and allows for saturation of the dispersive bound

→ The uncertainties are **truncation order independent**, increasing the expansion order does not change their size

 \rightarrow All p-values are larger than 11%

[Gubernari, MR, van Dyk, Virto '22]

SM predictions

- Good overall agreement with previous theoretical approaches [Beneke, Feldman, Seidel '01 & '04]
 - Small deviation in the slope of $B_s \rightarrow \varphi \mu \mu$
- Larger but controlled uncertainties especially near the J/ψ
 - \rightarrow The approach is **systematically improvable** (new channels, ψ (2S) data...)

E

Comparison with data

- Conservatively accounting for the non-local form factors does not solve the $b \rightarrow s\mu\mu$ anomalies
- The largest source of theoretical uncertainty at low q² still comes from local form factors

Experimental results:

[Babar: 1204.3933; Belle: 1908.01848, 1904.02440; ATLAS: 1805.04000, CMS: 1308.3409, 1507.08126, 2010.13968, LHCb: 1403.8044, 2012.13241, 2003.04831, 1606.04731, 2107.13428]

Méril Reboud - 11/05/2023

Additional plots can be found in the paper: 2206.03797 32

Effect of HPQCD 2022

[Gubernari, MR, van Dyk, Virto '22]

Méril Reboud - 11/05/2023

Effect of HPQCD 2022

With HPQCD 2022

IV. BSM analysis: proof of concept

BSM 'proof-of-concept' analysis

- A combined BSM analysis would be **very CPU expensive** (130 correlated, non-Gaussian, nuisance parameters!)
- Fit C₉ and C₁₀ **separately** for the three channels:
 - $B \rightarrow K\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -} + B_{_{\rm S}} \rightarrow \mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$
 - $B \rightarrow K^* \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$
 - $B_{s} \rightarrow \phi \mu^{+} \mu^{-}$

Effect of HPQCD 2022

Accounting for:

- CMS' $B_{s} \rightarrow \mu^{+}\mu^{-}$ measurement [2212.10311] \rightarrow SM-like, $C_{10}^{BSM} \rightarrow 0$
- HPQCD '22 B \rightarrow K form factors

Conclusion

Discussing BSM models requires a solid understanding of the hadronic physics:

- Local form factors uncertainties can be controlled and reduced by using improved dispersive bound and a *appropriate* parametrization
 - This is the first global analysis of $b \rightarrow s$ form factors
 - It is reassuring as it confirms channel-specific analyses...
 - ... and promising as dispersive effects start to be visible
- Non-local form factors can also be constrained by theory calculation and experimental measurements
 - \rightarrow In both cases:
 - Uncertainties are still large, but controlled by dispersive bounds
 - Our approach is systematically improvable

Back-up

Méril Reboud - 11/05/2023

 $B \rightarrow K^* P_5'$

Méril Reboud - 11/05/2023