# Canned WET goods: Low-energy BSM constraints for model builders

Heavy flavour aspects – 24/04/2023

Méril Reboud

Based on: Leljak, Melić, Novak, MR, van Dyk 2302.05268

#### Context

- Low-energy analyses deal with **O(100) hadronic nuisance parameters** 
  - QCD is non-perturbative
  - Lattice calculations are complicated
  - Other QCD methods (LCSR, QM) have uncontrolled uncertainties
  - $\rightarrow$  This is not something model builders want/should deal with
- **Question**: How can low-energy information be passed on to model builders with minimum dilution and modification?

 $\rightarrow$  I will try to provide a partial answer in the context of  $b \rightarrow u\ell v$ 

#### Experimental inputs for $b \rightarrow ul \vee (I)$

- B → πℓv: HFLAV '19 average of BaBar '10 and '12 and Belle '10 and '13 measurements → 13 q<sup>2</sup> bins
- B → ρℓv: average of BaBar '10 and Belle '13 measurements performed by [Bernlochner et al '21] → 11 q<sup>2</sup> bins
- B→ ωℓv: average of BaBar '12 and Belle '13 measurements performed by [Bernlochner et al '21] → 5 q<sup>2</sup> bins



## Experimental inputs for $b \rightarrow ul \vee (II)$

- We don't add the following data (yet):
  - $B \rightarrow \mu v$ : only observed with 2.8 $\sigma$  significance
  - −  $B \rightarrow \eta^{(')} \ell v$ : little statistics and poorly known form factors
  - Inclusive b → uℓv: assume SM in the analysis (more details later)
  - $\Lambda_b \rightarrow p\ell v$  and  $B_s \rightarrow K^{(*)}\ell v$  are measured by LHCb, but normalized to a b  $\rightarrow c\ell v$  mode!



#### WET

• Assume left-handed neutrinos only

$$\mathcal{H}^{ub\ell\nu} = -\frac{4G_F}{\sqrt{2}}\tilde{V}_{ub}\sum_i \mathcal{C}_i^\ell \mathcal{O}_i^\ell + \dots + \text{h.c.}.$$

•  $B \rightarrow \pi$  (pseudoscalar) and  $B \rightarrow \rho$ ,  $B \rightarrow \omega$  (vectors) are sensitive to different combinations of the operators

$$\begin{aligned} \mathcal{O}_{V,L}^{\ell} &= \begin{bmatrix} \bar{u}\gamma^{\mu}P_{L}b \end{bmatrix} \begin{bmatrix} \bar{\ell}\gamma_{\mu}P_{L}\nu \end{bmatrix}, \quad \mathcal{O}_{V,R}^{\ell} &= \begin{bmatrix} \bar{u}\gamma^{\mu}P_{R}b \end{bmatrix} \begin{bmatrix} \bar{\ell}\gamma_{\mu}P_{L}\nu \end{bmatrix}, \\ \mathcal{O}_{S,L}^{\ell} &= \begin{bmatrix} \bar{u}P_{L}b \end{bmatrix} \begin{bmatrix} \bar{\ell}P_{L}\nu \end{bmatrix}, \quad \mathcal{O}_{S,R}^{\ell} &= \begin{bmatrix} \bar{u}P_{R}b \end{bmatrix} \begin{bmatrix} \bar{\ell}P_{L}\nu \end{bmatrix}, \\ \mathcal{O}_{T}^{\ell} &= \begin{bmatrix} \bar{u}\sigma^{\mu\nu}b \end{bmatrix} \begin{bmatrix} \bar{\ell}\sigma_{\mu\nu}P_{L}\nu \end{bmatrix}. \end{aligned}$$

• Only one relevant operator in the SM, normalized to V<sub>ub</sub>

$$\mathcal{C}_{V,L}^{\ell} = 1 + \frac{\alpha_e}{\pi} \ln\left(\frac{M_Z}{\mu}\right)$$

## Hadronic inputs

- All the non-perturbativity of QCD appears in the *hadronic form factors*. These functions are known from LQCD and/or LCSR calculations:
  - $B \rightarrow \pi$ , we used the same inputs as [Leljak, Melić, van Dyk '21]
    - LQCD [FNAL+MILC '15] [UKQCD '15] and LCSR [Leljak, Melić, van Dyk '21]
    - BCL parametrization  $\rightarrow$  12 parameters
  - $B \rightarrow \rho$  and  $B \rightarrow \omega$ 
    - LCSR [Bharucha, Straub, Zwicky '15]
    - BSZ parametrization
       → 2\*19 parameters
  - $\rightarrow$  50 nuisance parameters



[Leljak, Melić, van Dyk '21]

#### Méril Reboud - 24/04/2023

## Methodology

• Our goals:

1) Determine the consistency of exclusive data and the quality of a  $\left|V_{ub}\right|$  extraction

2) Determine whether a BSM explanation of the data is favored over the SM

3) Provide the posterior likelihood of the WCs  $C_i$ 

- We perform 3 Bayesian analyses:
  - $SM \rightarrow$  only float hadronic inputs: null hypothesis
  - **CKM**  $\rightarrow$  float hadronic inputs and extract  $|V_{ub}|$
  - WET  $\rightarrow$  float hadronic inputs and extract the WCs C<sub>i</sub>
- We sampled using *nested* sampling and **EOS**: <u>eos.github.io</u>



#### Results: Extraction of $|V_{ub}|$

- Good fits: p values > 52%
- Form factors uncertainties propagate to |Vub|



| Goodness of fit               |          |        |               |                        |
|-------------------------------|----------|--------|---------------|------------------------|
| Data set                      | $\chi^2$ | d.o.f. | p value $[%]$ | $ V_{ub}  \times 10^3$ |
| $\bar{B} \to \pi \ell \nu$    | 27.83    | 31     | 62.98         | $3.79_{-0.15}^{+0.15}$ |
| $\bar{B}\to\rho\ell\nu$       | 5.08     | 10     | 88.60         | $2.63_{-0.22}^{+0.25}$ |
| $\bar{B} \to \omega \ell \nu$ | 3.19     | 4      | 52.66         | $2.74^{+0.33}_{-0.28}$ |
| all data                      | 52.31    | 47     | 27.53         | $3.50^{+0.13}_{-0.12}$ |

- State-of-the-art determinations:
  - Inclusive [HFLAV, PDG, ... '22]
    |V<sub>ub</sub>| = 4.13(12)(13)(18) 10<sup>-3</sup>
  - Exclusive [HFLAV, PDG, ... '20]  $|V_{ub}| = 3.70(10)(12) \ 10^{-3}$

#### Results: Predictions for $B \rightarrow \ell \vee$

• We can post-dict values for all relevant  $b \rightarrow u\ell v$  observable, e.g.

$$\mathcal{B}(\bar{B}^{-} \to \tau^{-} \bar{\nu}) = \left(7.87^{+0.58}_{-0.54}\big|_{|V_{ub}|} \pm 0.12\big|_{f_{B}}\right) \times 10^{-5},$$
  
$$\mathcal{B}(\bar{B}^{-} \to \mu^{-} \bar{\nu}) = \left(3.54^{+0.26}_{-0.24}\big|_{|V_{ub}|} \pm 0.05\big|_{f_{B}}\right) \times 10^{-7},$$
  
$$\mathcal{B}(\bar{B}^{-} \to e^{-} \bar{\nu}) = \left(8.28^{+0.61}_{-0.56}\big|_{|V_{ub}|} \pm 0.12\big|_{f_{B}}\right) \times 10^{-12}$$

• To be compared with the experimental result:

$$\mathcal{B}(\bar{B}^- \to \mu^- \bar{\nu}) \Big|_{\text{Belle '19}} = (5.3 \pm 2.2) \times 10^{-7}$$

#### Results: Global likelihood



## Conclusion (I)

- Yes, the  $|V_{ub}|$  inclusive vs. exclusive tension is still present, albeit diminished
- Yes, NP contributions consistently improve the  $b \rightarrow u\ell v$  fit
- But more important (in my opinion): this analysis is meant as a benchmark for future work:
  - Testing BSM models cannot be done with O(100) hadronic nuisance parameters
  - $\rightarrow$  The theory community will need such (up-to-date) WET likelihoods
  - → The theory and experimental communities will need to agree on
    (1) an exchange format for non Gaussian likelihoods
    (2) hadronic inputs
    (2) cheen where of interest
    - (3) observables of interest...

#### Méril Reboud - 24/04/2023

## Conclusion (II)

Examples of problems we need to solve/avoid:

- b → uℓv inclusive (and exclusive, to a smaller extent) analyses need to assume SM for MC production, efficiency calculation...
  - This makes a WET analysis impossible at present
  - One possible solution is to reweight MC samples with BSM weights (Hammer, EOS...)
  - But all the analysis steps have to be adapted
- Some experiments suggest an unbinned fit of the WET WC
  - This should only be an additional piece of information

 $\rightarrow$  Global analyses would require the full posterior, including all nuisance parameters which is very hard if not impossible to achieve.