Improved Theory Predictions in $b \rightarrow sll$

Quirks in Quark Flavor Physics – 14/06/2022

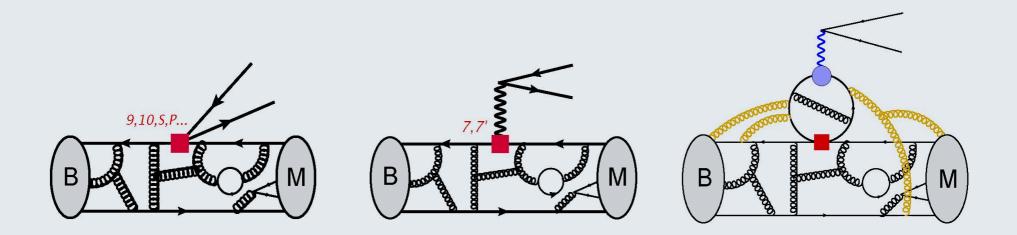
Méril Reboud

In collaboration with: N. Gubernari, D. van Dyk, J. Virto, arXiv:2206.03797

ПП

Technische Universität München

Form-factors in $b \rightarrow sll$

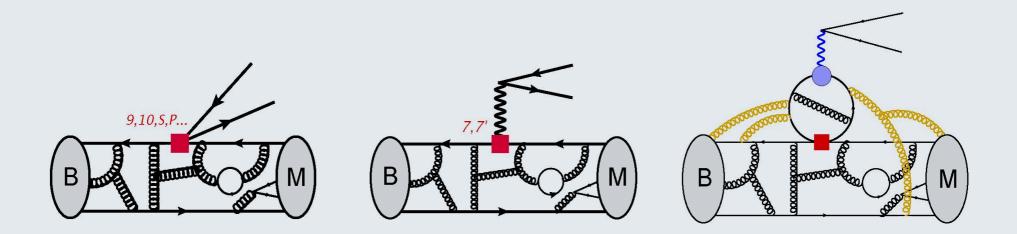


$$\mathcal{A}_{\lambda}^{L,R}(B \to M_{\lambda}\ell\ell) = \mathcal{N}_{\lambda} \left\{ (C_9 \mp C_{10})\mathcal{F}_{\lambda}(q^2) + \frac{2m_b M_B}{q^2} \left[C_7 \mathcal{F}_{\lambda}^T(q^2) - 16\pi^2 \frac{M_B}{m_b} \mathcal{H}_{\lambda}(q^2) \right] \right\}$$

- $B \rightarrow K \mu\mu, B \rightarrow K^* \mu\mu$
- $B_s \rightarrow \phi \mu \mu$
- $\Lambda_{\rm b} \rightarrow \Lambda \ \mu \mu, \dots$

We focus on these **3 channels** (and their isospin partners)!

Form-factors in $b \rightarrow sll$



$$\mathcal{A}_{\lambda}^{L,R}(B \to M_{\lambda}\ell\ell) = \mathcal{N}_{\lambda} \left\{ (C_9 \mp C_{10})\mathcal{F}_{\lambda}(q^2) + \frac{2m_b M_B}{q^2} \left[C_7 \mathcal{F}_{\lambda}^T(q^2) - 16\pi^2 \frac{M_B}{m_b} \mathcal{H}_{\lambda}(q^2) \right] \right\}$$

Local form-factors

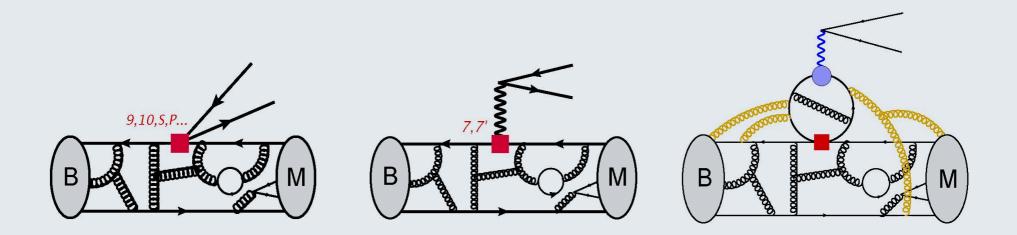
$$\mathcal{F}_{\mu}(k,q) = \langle \bar{M}(k) | \bar{s} \gamma_{\mu} b_L | \bar{B}(q+k) \rangle$$

Updated predictions based on:

- Lattice QCD calculations
- Light-cone sum rules estimates

... more in backup.

Form-factors in $b \rightarrow sll$



$$\mathcal{A}_{\lambda}^{L,R}(B \to M_{\lambda}\ell\ell) = \mathcal{N}_{\lambda} \left\{ (C_9 \mp C_{10})\mathcal{F}_{\lambda}(q^2) + \frac{2m_b M_B}{q^2} \left[C_7 \mathcal{F}_{\lambda}^T(q^2) - 16\pi^2 \frac{M_B}{m_b} \mathcal{H}_{\lambda}(q^2) \right] \right\}$$

Non-local form-factors

$$\mathcal{H}_{\lambda}(q^2) = i\mathcal{P}^{\lambda}_{\mu} \int d^4x \, e^{iq \cdot x} \langle \bar{M}_{\lambda}(k) | T\{\mathcal{J}^{\mu}_{\mathrm{em}}(x), \mathcal{C}_i\mathcal{O}_i(0)\} | \bar{B}(q+k) \rangle$$

 \rightarrow Main contributions: $\mathcal{O}_1^c, \mathcal{O}_2^c$ the so-called "charm-loops"

Méril Reboud - 10/06/2022

Estimation of H_{λ}

QCD factorization in heavy quark limit [Beneke, Feldmann, Seidel, '01 & '04]

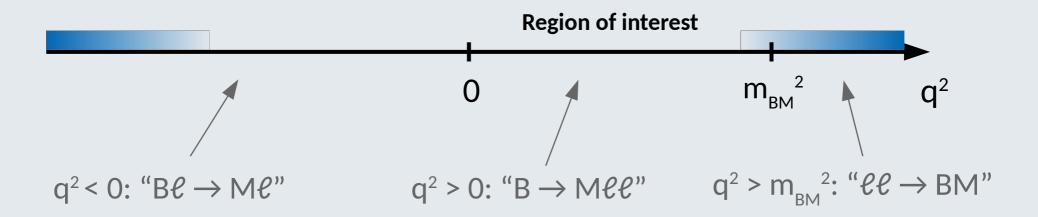
- Uses relations between the **local** form-factors
- + perturbative contributions from the charm loops

 \rightarrow Limited control on the uncertainties

 \rightarrow Knows nothing about the J/ ψ and the ψ (2S)!

- 1. Two types of **OPE** can be used for H_{λ} :
 - Local OPE $|q|^2 \gtrsim m_b^2$ [Grinstein, Piryol 2004][Beylich, Buchalla, Feldmann 2011]

 \rightarrow We will discuss it later

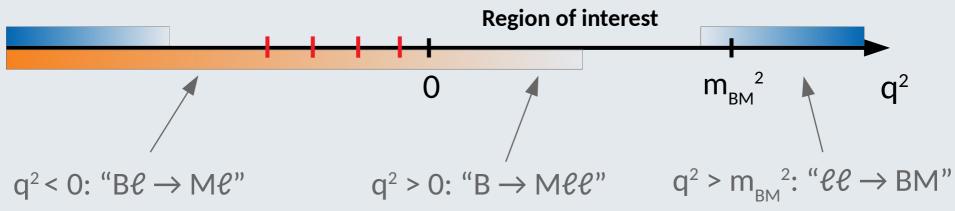


- 1. Two types of **OPE** can be used for H_{λ} :
 - Local OPE $|q|^2 \gtrsim m_b^2$ [Grinstein, Piryol 2004][Beylich, Buchalla, Feldmann 2011]

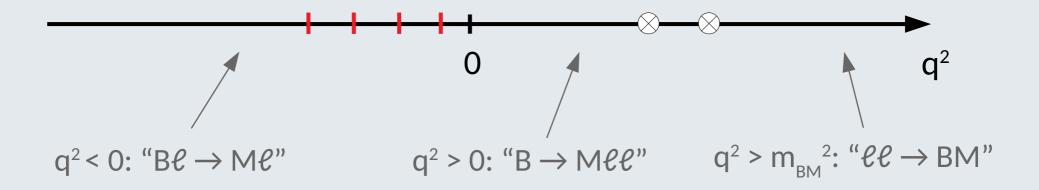
 \rightarrow We will discuss it later

 Light Cone OPE q² << 4m_c² [Khodjamirian, Mannel, Pivovarov, Wang 2010]

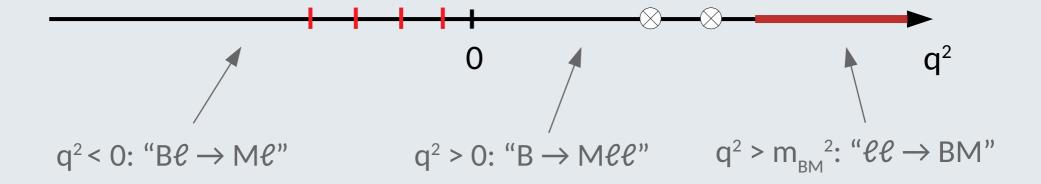
 \rightarrow theory points at q² < 0 [Gubernari, van Dyk, Virto 2020]



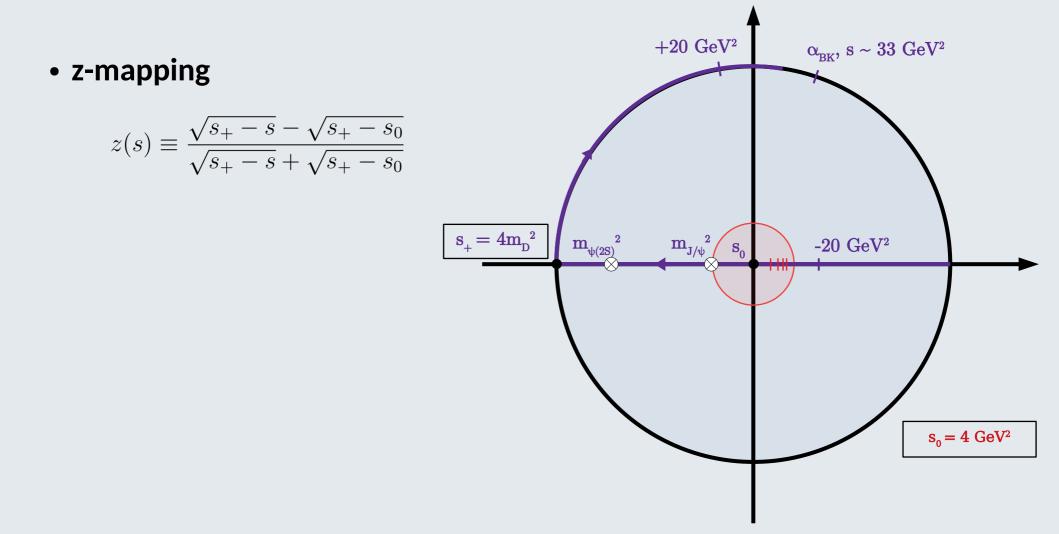
- 2. Charmonium resonances [Bobeth, Chrzaszsz, van Dyk, Virto'17]:
 - H_{λ} presents **poles** at q² = $m_{J/\psi}^{2}$ and $m_{\psi(2S)}^{2}$
 - For this work we only use $B \rightarrow M J/\psi$ data



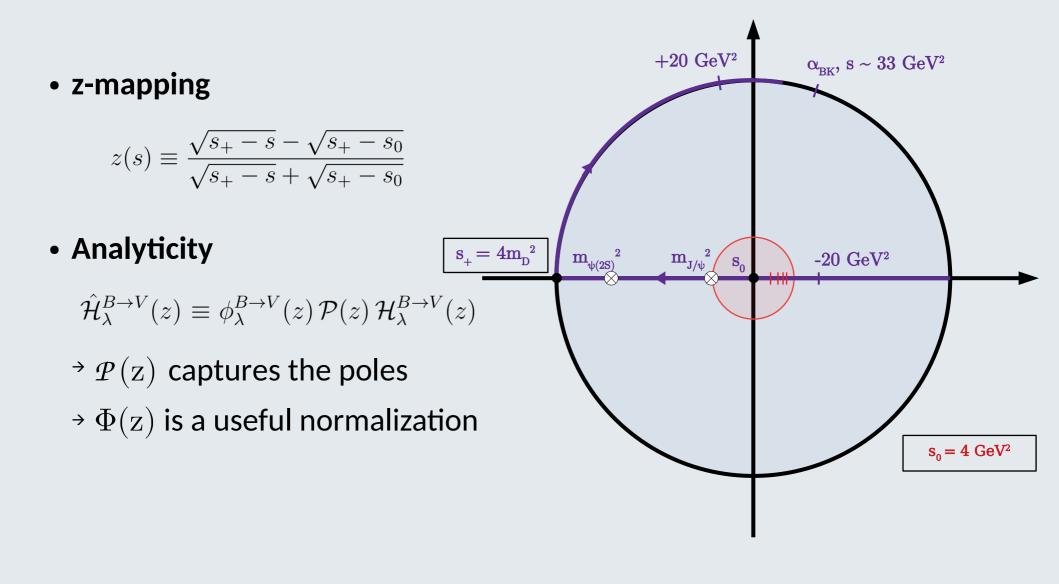
- 2. Charmonium resonances [Bobeth, Chrzaszsz, van Dyk, Virto'17]:
 - H_{λ} presents **poles** at q² = $m_{J/\psi}^{2}$ and $m_{\psi(2S)}^{2}$
 - For this work we only use $B \rightarrow M J/\psi$ data
- 3. H_{λ} has a **branch cut** for $q^2 > 4m_D^2$



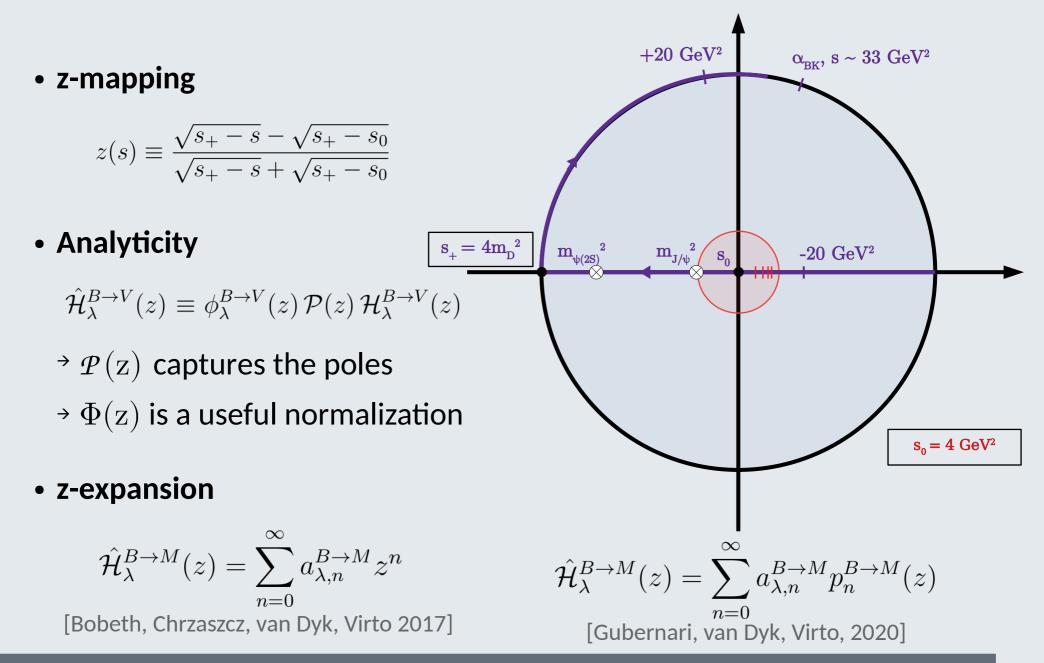
Parametrization of H_{λ}



Parametrization of H_{λ}



Parametrization of H_{λ}



Méril Reboud - 10/06/2022

$$\hat{\mathcal{H}}_{\lambda}^{B \to M}(z) = \sum_{n=0}^{\infty} a_{\lambda,n}^{B \to M} z^n$$

• In practice, $a_{\lambda,n}^{B \to M} = 0$ for n > N. What is the truncation error?

$$\hat{\mathcal{H}}_{\lambda}^{B \to M}(z) = \sum_{n=0}^{\infty} a_{\lambda,n}^{B \to M} z^n$$

- In practice, $a_{\lambda,n}^{B \to M} = 0$ for n > N. What is the truncation error?
- The z^n convergence is fast $|z_{J/\psi}| \sim |z_{-7}| \sim 0.2$ ($|z_{\psi(2S)}| \sim 0.7$)

$$\hat{\mathcal{H}}_{\lambda}^{B \to M}(z) = \sum_{n=0}^{\infty} a_{\lambda,n}^{B \to M} z^n$$

- In practice, $a_{\lambda,n}^{B \to M} = 0$ for n > N. What is the truncation error?
- The z^n convergence is fast $|z_{J/\psi}| \sim |z_{-7}| \sim 0.2$ ($|z_{\psi(2S)}| \sim 0.7$)
- **Dispersive bound** (from the **Local** OPE)

$$1 > 2 \int_{-\alpha_{BK}}^{+\alpha_{BK}} d\alpha \left| \hat{\mathcal{H}}_{0}^{B \to K}(e^{i\alpha}) \right|^{2} + \sum_{\lambda} \left[2 \int_{-\alpha_{BK^{*}}}^{+\alpha_{BK^{*}}} d\alpha \left| \hat{\mathcal{H}}_{\lambda}^{B \to K^{*}}(e^{i\alpha}) \right|^{2} + \int_{-\alpha_{Bs\phi}}^{+\alpha_{Bs\phi}} d\alpha \left| \hat{\mathcal{H}}_{\lambda}^{Bs \to \phi}(e^{i\alpha}) \right|^{2} \right]$$

$$\hat{\mathcal{H}}_{\lambda}^{B \to M}(z) = \sum_{n=0}^{\infty} a_{\lambda,n}^{B \to M} z^n$$

- In practice, $a_{\lambda,n}^{B \to M} = 0$ for n > N. What is the truncation error?
- The z^n convergence is fast $|z_{J/\psi}| \sim |z_{-7}| \sim 0.2$ ($|z_{\psi(25)}| \sim 0.7$)
- **Dispersive bound** (from the **Local** OPE)

$$1 > 2\int_{-\alpha_{BK}}^{+\alpha_{BK}} d\alpha \left| \hat{\mathcal{H}}_{0}^{B \to K}(e^{i\alpha}) \right|^{2} + \sum_{\lambda} \left[2\int_{-\alpha_{BK^{*}}}^{+\alpha_{BK^{*}}} d\alpha \left| \hat{\mathcal{H}}_{\lambda}^{B \to K^{*}}(e^{i\alpha}) \right|^{2} + \int_{-\alpha_{Bs\phi}}^{+\alpha_{Bs\phi}} d\alpha \left| \hat{\mathcal{H}}_{\lambda}^{Bs \to \phi}(e^{i\alpha}) \right|^{2} \right]$$

→ With orthonormal polynomials:

$$\hat{\mathcal{H}}_{\lambda}^{B \to M}(z) = \sum_{n=0}^{\infty} a_{\lambda,n}^{B \to M} p_n^{B \to M}(z)$$

$$\sum_{n=0}^{\infty} \left\{ 2 \left| a_{0,n}^{B \to K} \right|^2 + \sum_{\lambda = \perp, \parallel, 0} \left[2 \left| a_{\lambda,n}^{B \to K^*} \right|^2 + \left| a_{\lambda,n}^{B_s \to \phi} \right|^2 \right] \right\} < 1$$

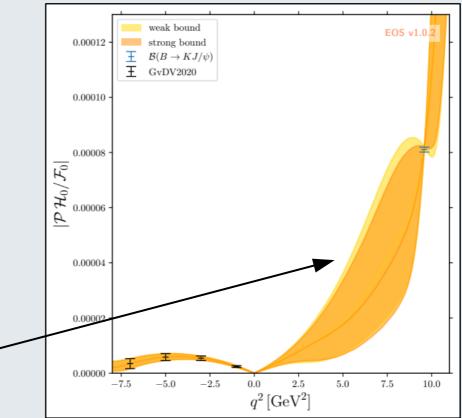
Méril Reboud - 10/06/2022

[Gubernari, van Dyk, Virto, 2020] 16

Anticipating on the results:

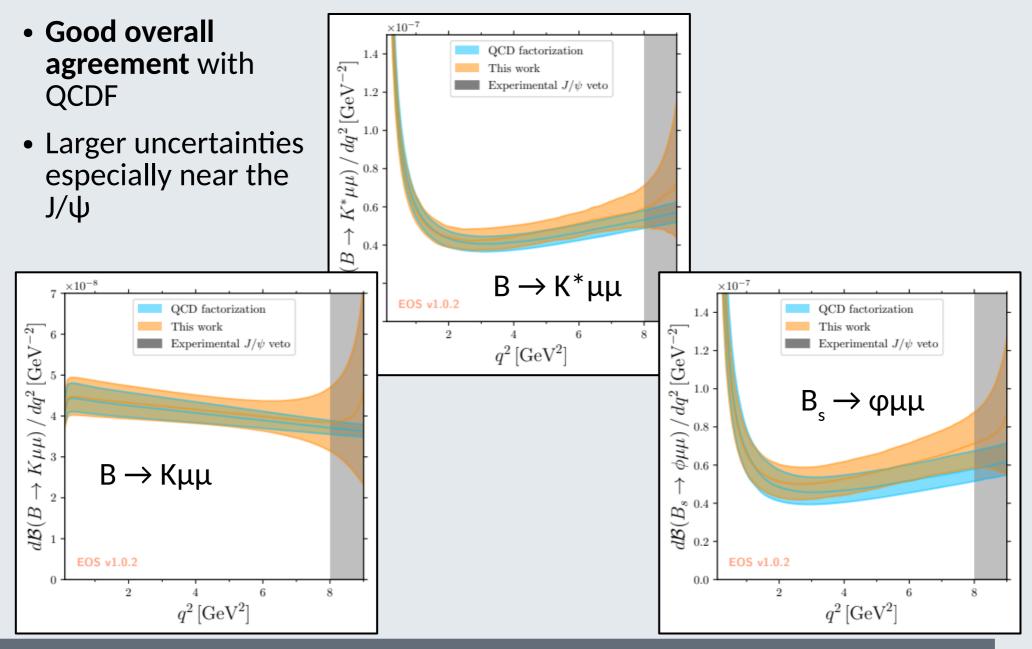
Expand up to order 5:

- 12 real parameters
- 8 constraints at negative q²
- 1 constraint at $m_{J/\psi}^2$
 - → 3 free parameters **constrained by the dispersive bound**!
 - 1) Controlled uncertainty in the physical region



2) Adding an order in the expansion **doesn't increase this uncertainty**!

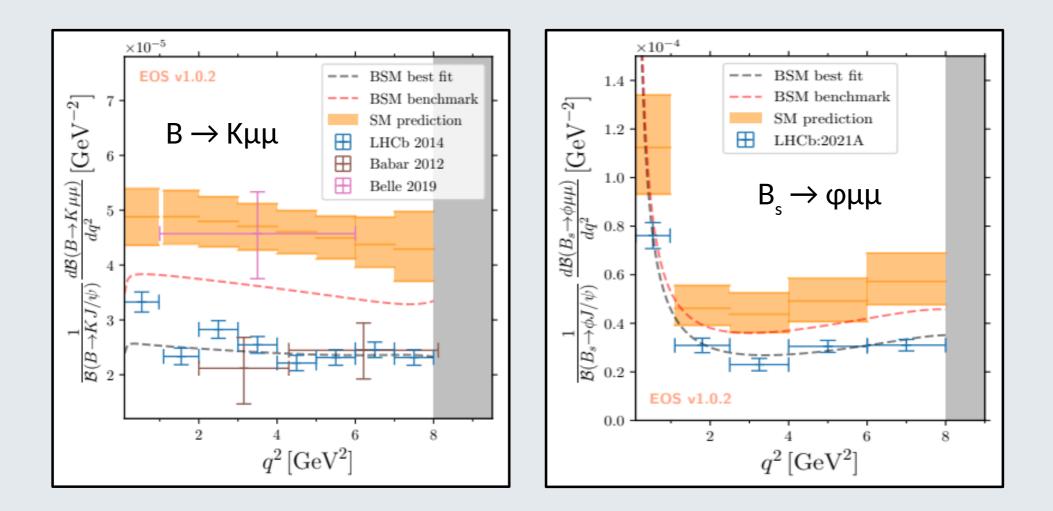
Comparison with QCDF



Méril Reboud - 10/06/2022

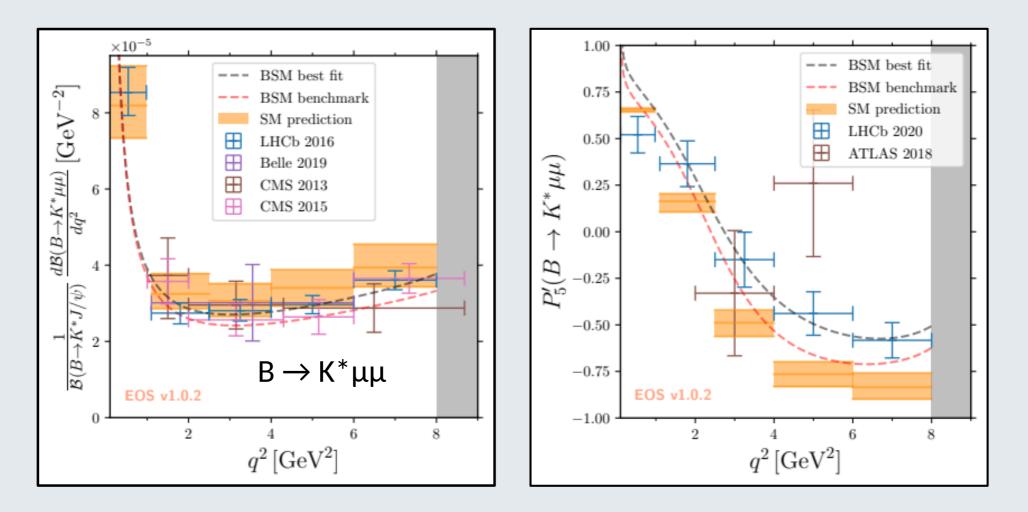
Updated (B)SM predictions

• We confirm the overall tension with experimental data



Updated (B)SM predictions

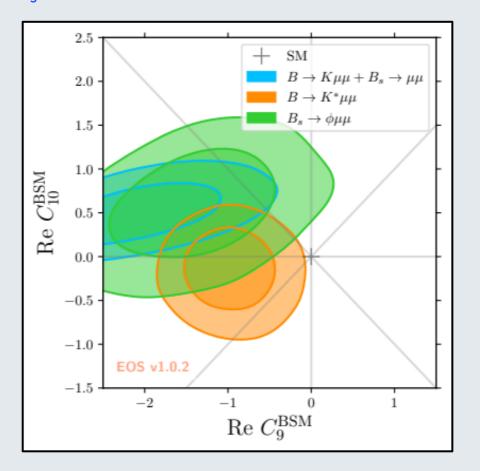
 For B → K^{*}µµ the tension is smaller than in the literature due to different approaches and inputs



BSM analysis

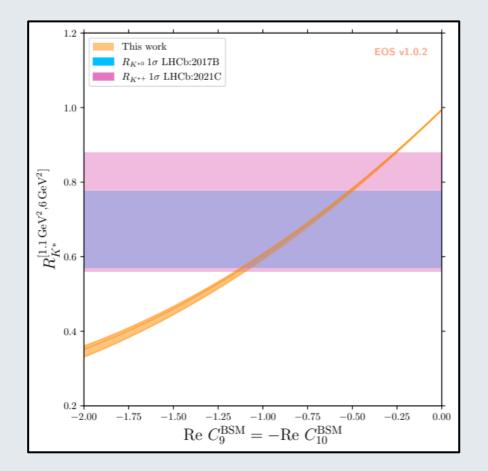
- A combined BSM analysis would be very CPU expensive (130 nuisance parameters!)
- Fit **separately** C_o and C₁₀ for the three channels:

 $B \rightarrow K\mu^+\mu^- + B_{\rho} \rightarrow \mu^+\mu^-$, $B \rightarrow K^*\mu^+\mu^-$ and $B_{\rho} \rightarrow \phi\mu^+\mu^-$



BSM analysis

- A combined BSM analysis would be **very CPU expensive** (130 nuisance parameters!)
- Fit **separately** C₉ and C₁₀ for the three channels



• Flavor universality-testing ratios

$$R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)} \mu^+ \mu^-)}{\mathcal{B}(B \to K^{(*)} e^+ e^-)}$$

are **weakly sensitive to nonlocal contributions!**

Summary & Outlook

- We provide new SM predictions of $b \rightarrow s\ell\ell$ observables with
 - **Updated fit** to the *local* form-factors;
 - **Controlled uncertainties** on the *non-local* contributions.
- We performed a (C₉, C₁₀) BSM analysis, confirming the current trend.
- What is next?
 - Perform an **extended BSM analysis**;
 - Extend the prediction to **higher q**² values (including the $\psi(2S)$)
 - Include **other channels** $\Lambda_b \rightarrow \Lambda \mu \mu$, ...

Back-up

Méril Reboud - 10/06/2022

Putting everything together:

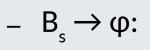
- The fit is performed in two steps...
 - Preliminary fits:
 - Local form factors:
 - BSZ parametrization (8 + 19 + 19 parameters)
 - LCSR + LQCD, more in the backup
 - Non-local form factors:
 - order 5 GvDV parametrization (12 + 36 + 36 parameters)
 - 4 points at negative $q^2 + B \rightarrow M J/\psi$ data
 - \rightarrow 130 nuisance parameters
 - 'Proof of concept' fit to the WET's Wilson coefficients
- ... using **EOS**:

EOS is a software for a variety of applications in flavour physics. It is written in C++, but provides an interface to Python.

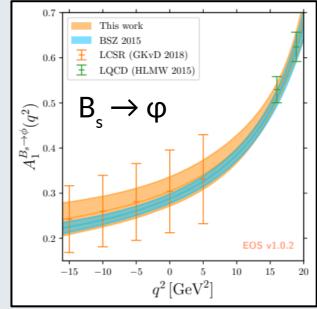
Fit to local form factors

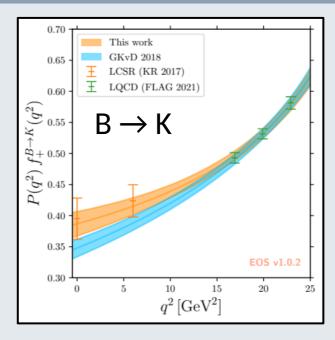
Combined fit to LCSR and lattice:

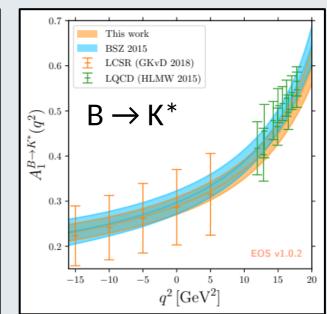
- $B \rightarrow K:$
 - HPQCD'17; FNAL/MILC'17
 - Khodjamiriam and Rusov'17
- $B \rightarrow K^*:$
 - Horgan, Liu, Meinel and Wingate'15
 - Gubernari, Kokulu and van Dyk'18



- Horgan, Liu, Meinel and Wingate'15
- Gubernari, van Dyk and Virto'20



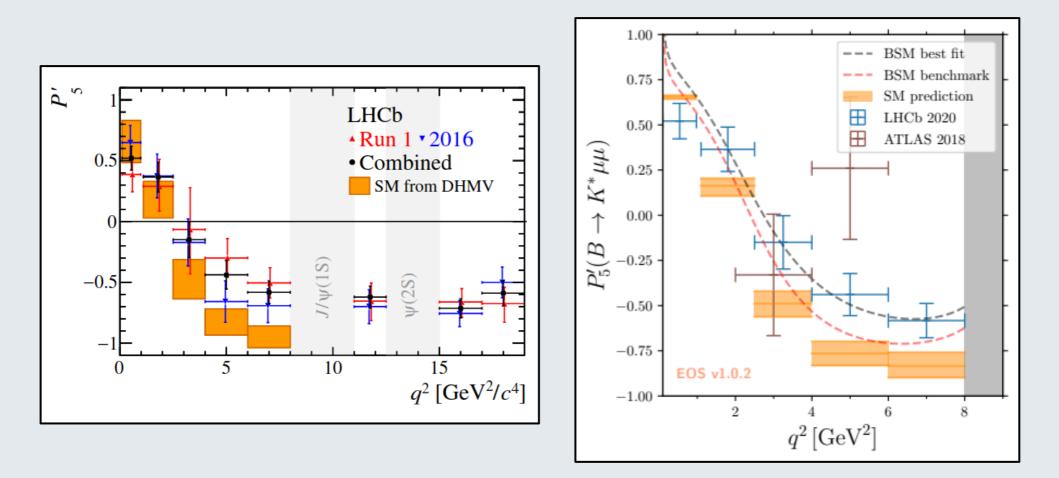




A few remarks

- 1. QCD Factorization [Beneke, Feldmann, Seidel, 2001 & 2004]
- 2. Theory uncertainties due to charm-loops cancel in ratios observables → "clean" observables Anomalies are not entirely due to charm-loops!
- **3. Agreement** between "clean" and "not-so-clean" observables Charm-loops effects cannot be very large!
- 4. Naively set theory uncertainty to 0 in H_{λ} :
 - → Significance of the C₉ vs. C₁₀ fit rises from $\sim 4\sigma$ to $\sim 8\sigma$! This talk is not a waste of time...
- 5. Theory puzzles in $b \rightarrow s\overline{c}c$ [see e.g. Lyon, Zwicky, 2014] We need to be careful...

Data-driven (B)SM predictions



Méril Reboud - 10/06/2022