Improved Theory Predictions in $b \rightarrow s l l$

Quirks in Quark Flavor Physics - 14/06/2022

Méril Reboud

In collaboration with:
N. Gubernari, D. van Dyk, J. Virto, arXiv:2206.03797

Form-factors in $\mathrm{b} \rightarrow$ sll

$\mathcal{A}_{\lambda}^{L, R}\left(B \rightarrow M_{\lambda} \ell \ell\right)=\mathcal{N}_{\lambda}\left\{\left(C_{9} \mp C_{10}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\frac{2 m_{b} M_{B}}{q^{2}}\left[C_{7} \mathcal{F}_{\lambda}^{T}\left(q^{2}\right)-16 \pi^{2} \frac{M_{B}}{m_{b}} \mathcal{H}_{\lambda}\left(q^{2}\right)\right]\right\}$

- $\left.\mathrm{B} \rightarrow \mathrm{K} \mu \mu, \mathrm{B} \rightarrow \mathrm{K}^{*} \mu \mu\right\} \quad$ We focus on these 3 channels
- $\mathrm{B}_{\mathrm{s}} \rightarrow \varphi \mu \mu$ (and their isospin partners)!
- $\Lambda_{b} \rightarrow \wedge \mu \mu, \ldots$

Form-factors in $\mathrm{b} \rightarrow$ sll

$\mathcal{A}_{\lambda}^{L, R}\left(B \rightarrow M_{\lambda} \ell \ell\right)=\mathcal{N}_{\lambda}\left\{\left(C_{9} \mp C_{10}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\frac{2 m_{b} M_{B}}{q^{2}}\left[C_{7} \mathcal{F}_{\lambda}^{T}\left(q^{2}\right)-16 \pi^{2} \frac{M_{B}}{m_{b}} \mathcal{H}_{\lambda}\left(q^{2}\right)\right]\right\}$
Local form-factors

$$
\mathcal{F}_{\mu}(k, q)=\langle\bar{M}(k)| \bar{s} \gamma_{\mu} b_{L}|\bar{B}(q+k)\rangle
$$

Updated predictions based on:

- Lattice QCD calculations
- Light-cone sum rules estimates
... more in backup.

Form-factors in $\mathrm{b} \rightarrow$ sll

$\mathcal{A}_{\lambda}^{L, R}\left(B \rightarrow M_{\lambda} \ell \ell\right)=\mathcal{N}_{\lambda}\left\{\left(C_{9} \mp C_{10}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\frac{2 m_{b} M_{B}}{q^{2}}\left[C_{7} \mathcal{F}_{\lambda}^{T}\left(q^{2}\right)-16 \pi^{2} \frac{M_{B}}{m_{\boldsymbol{h}}} \mathcal{H}_{\lambda}\left(q^{2}\right)\right]\right\}$

Non-local form-factors

$$
\mathcal{H}_{\lambda}\left(q^{2}\right)=i \mathcal{P}_{\mu}^{\lambda} \int d^{4} x e^{i q \cdot x}\left\langle\bar{M}_{\lambda}(k)\right| T\left\{\mathcal{J}_{\mathrm{em}}^{\mu}(x), \mathcal{C}_{i} \mathcal{O}_{i}(0)\right\}|\bar{B}(q+k)\rangle
$$

\rightarrow Main contributions: $\mathcal{O}_{1}^{c}, \mathcal{O}_{2}^{c}$ the so-called "charm-loops"

Estimation of H_{λ}

QCD factorization in heavy quark limit [Beneke, Feldmann, Seidel, '01\& '04]

- Uses relations between the local form-factors
- + perturbative contributions from the charm loops
\rightarrow Limited control on the uncertainties
\rightarrow Knows nothing about the J / Ψ and the $\psi(2 S)$!

Constraints on H_{λ}

1. Two types of OPE can be used for H_{λ} :

- Local OPE $|a|^{2} \gtrsim m_{b}^{2}$ [Grinstein, Piryol 2004][Beylich, Buchalla, Feldmann 2011]
\rightarrow We will discuss it later

Constraints on H_{λ}

1. Two types of OPE can be used for H_{λ} :

- Local OPE $|a|^{2} \gtrsim m_{b}^{2}$ [Grinstein, Piryol 2004][Beylich, Buchalla, Feldmann 2011]
\rightarrow We will discuss it later
- Liight Cone OPE $q^{2} \ll 4 m_{c}^{2}$ [Khodjamirian, Mannel, Pivovarov, Wang 2010]
\rightarrow theory points at $\mathrm{q}^{2}<0$ [Gubernari, van Dyk, Virto 2020]

Constraints on H_{λ}

2. Charmonium resonances [Bobeth, Chrzaszsz, van Dyk, Virto'17]:

- H_{λ} presents poles at $q^{2}=m_{J / \Psi}{ }^{2}$ and $m_{\Psi(2 S)}{ }^{2}$
- For this work we only use $\mathbf{B} \rightarrow \mathbf{M J} \mathbf{~} \Psi$ data

Constraints on H_{λ}

2. Charmonium resonances [Bobeth, Chrzaszsz, van Dyk, Virto'17]:

- H_{λ} presents poles at $q^{2}=m_{J / \Psi}{ }^{2}$ and $m_{\Psi(2 S)}{ }^{2}$
- For this work we only use $\mathbf{B} \rightarrow \mathbf{M J / \Psi}$ data

3. H_{λ} has a branch cut for $q^{2}>4 m_{D}{ }^{2}$

Parametrization of H_{λ}

- z-mapping

$$
z(s) \equiv \frac{\sqrt{s_{+}-s}-\sqrt{s_{+}-s_{0}}}{\sqrt{s_{+}-s}+\sqrt{s_{+}-s_{0}}}
$$

Parametrization of H_{λ}

- z-mapping

$$
z(s) \equiv \frac{\sqrt{s_{+}-s}-\sqrt{s_{+}-s_{0}}}{\sqrt{s_{+}-s}+\sqrt{s_{+}-s_{0}}}
$$

- Analyticity

$$
\hat{\mathcal{H}}_{\lambda}^{B \rightarrow V}(z) \equiv \phi_{\lambda}^{B \rightarrow V}(z) \mathcal{P}(z) \mathcal{H}_{\lambda}^{B \rightarrow V}(z)
$$

$\rightarrow \mathcal{P}(\mathrm{z})$ captures the poles
$\rightarrow \Phi(\mathrm{z})$ is a useful normalization

Parametrization of H_{λ}

- z-mapping

$$
z(s) \equiv \frac{\sqrt{s_{+}-s}-\sqrt{s_{+}-s_{0}}}{\sqrt{s_{+}-s}+\sqrt{s_{+}-s_{0}}}
$$

- Analyticity

$$
\hat{\mathcal{H}}_{\lambda}^{B \rightarrow V}(z) \equiv \phi_{\lambda}^{B \rightarrow V}(z) \mathcal{P}(z) \mathcal{H}_{\lambda}^{B \rightarrow V}(z)
$$

$\rightarrow \mathcal{P}(\mathrm{z})$ captures the poles
$\rightarrow \Phi(z)$ is a useful normalization

- z-expansion

$$
\hat{\mathcal{H}}_{\lambda}^{B \rightarrow M}(z)=\sum_{n=0}^{\infty} a_{\lambda, n}^{B \rightarrow M} z^{n}
$$

[Bobeth, Chrzaszcz, van Dyk, Virto 2017]

$$
\hat{\mathcal{H}}_{\lambda}^{B \rightarrow M}(z)=\sum_{n=0}^{\infty} a_{\lambda, n}^{B \rightarrow M} p_{n}^{B \rightarrow M}(z)
$$

[Gubernari, van Dyk, Virto, 2020]

Dispersive bound

$$
\hat{\mathcal{H}}_{\lambda}^{B \rightarrow M}(z)=\sum_{n=0}^{\infty} a_{\lambda, n}^{B \rightarrow M} z^{n}
$$

- In practice, $a_{\lambda, n}^{B \rightarrow M}=0$ for $\mathrm{n}>\mathrm{N}$. What is the truncation error?

Dispersive bound

$$
\hat{\mathcal{H}}_{\lambda}^{B \rightarrow M}(z)=\sum_{n=0}^{\infty} a_{\lambda, n}^{B \rightarrow M} z^{n}
$$

- In practice, $a_{\lambda, n}^{B \rightarrow M}=0$ for $\mathrm{n}>\mathrm{N}$. What is the truncation error?
- The z^{n} convergence is fast $\left|z_{J / \psi}\right| \sim\left|z_{-7}\right| \sim 0.2 \quad\left(\left|z_{\psi(25)}\right| \sim 0.7\right)$

Dispersive bound

$$
\hat{\mathcal{H}}_{\lambda}^{B \rightarrow M}(z)=\sum_{n=0}^{\infty} a_{\lambda, n}^{B \rightarrow M} z^{n}
$$

- In practice, $a_{\lambda, n}^{B \rightarrow M}=0$ for $\mathrm{n}>\mathrm{N}$. What is the truncation error?
- The z^{n} convergence is fast $\left|z_{J / \psi}\right| \sim\left|z_{-7}\right| \sim 0.2 \quad\left(\left|z_{\Psi(25)}\right| \sim 0.7\right)$
- Dispersive bound (from the Local OPE)
$1>2 \int_{-\alpha_{B K}}^{+\alpha_{B K}} d \alpha\left|\hat{\mathcal{H}}_{0}^{B \rightarrow K}\left(e^{i \alpha}\right)\right|^{2}+\sum_{\lambda}\left[2 \int_{-\alpha_{B K^{*}}}^{+\alpha_{B K^{*}}} d \alpha\left|\hat{\mathcal{H}}_{\lambda}^{B \rightarrow K^{*}}\left(e^{i \alpha}\right)\right|^{2}+\int_{-\alpha_{B_{s} \phi}}^{+\alpha_{B s \phi}} d \alpha\left|\hat{\mathcal{H}}_{\lambda}^{B_{s} \rightarrow \phi}\left(e^{i \alpha}\right)\right|^{2}\right]$

Dispersive bound

$$
\hat{\mathcal{H}}_{\lambda}^{B \rightarrow M}(z)=\sum_{n=0}^{\infty} a_{\lambda, n}^{B \rightarrow M} z^{n}
$$

- In practice, $a_{\lambda, n}^{B \rightarrow M}=0$ for $\mathrm{n}>\mathrm{N}$. What is the truncation error?
- The z^{n} convergence is fast $\left|z_{J / /}\right| \sim\left|z_{-7}\right| \sim 0.2 \quad\left(\left|z_{\Psi(25)}\right| \sim 0.7\right)$
- Dispersive bound (from the Local OPE)
$1>2 \int_{-\alpha_{B K}}^{+\alpha_{B K}} d \alpha\left|\hat{\mathcal{H}}_{0}^{B \rightarrow K}\left(e^{i \alpha}\right)\right|^{2}+\sum_{\lambda}\left[2 \int_{-\alpha_{B K^{*}}}^{+\alpha_{B K^{*}}} d \alpha\left|\hat{\mathcal{H}}_{\lambda}^{B \rightarrow K^{*}}\left(e^{i \alpha}\right)\right|^{2}+\int_{-\alpha_{B_{s} \phi}}^{+\alpha_{B s}} d \alpha\left|\hat{\mathcal{H}}_{\lambda}^{B_{s} \rightarrow \phi}\left(e^{i \alpha}\right)\right|^{2}\right]$
\rightarrow With orthonormal polynomials: $\quad \hat{\mathcal{H}}_{\lambda}^{B \rightarrow M}(z)=\sum_{n=0}^{\infty} a_{\lambda, n}^{B \rightarrow M} p_{n}^{B \rightarrow M}(z)$

$$
\sum_{n=0}^{\infty}\left\{2\left|a_{0, n}^{B \rightarrow K}\right|^{2}+\sum_{\lambda=\perp, \|, 0}\left[2\left|a_{\lambda, n}^{B \rightarrow K^{*}}\right|^{2}+\left|a_{\lambda, n}^{B_{s} \rightarrow \phi}\right|^{2}\right]\right\}<1
$$

Anticipating on the results:

Expand up to order 5:

- 12 real parameters
- 8 constraints at negative q^{2}
- 1 constraint at $\mathrm{m}_{\mathrm{J} / \psi}{ }^{2}$
$\rightarrow 3$ free parameters constrained by the dispersive bound!

1) Controlled uncertainty in the physical region

2) Adding an order in the expansion doesn't increase this uncertainty!

Comparison with QCDF

- Good overall agreement with QCDF
- Larger uncertainties especially near the J/ Ψ

Méril Reboud - 10/06/2022

Updated (B)SM predictions

- We confirm the overall tension with experimental data

Updated (B)SM predictions

- For $B \rightarrow K^{*} \mu \mu$ the tension is smaller than in the literature due to different approaches and inputs

BSM analysis

- A combined BSM analysis would be very CPU expensive (130 nuisance parameters!)
- Fit separately C_{9} and C_{10} for the three channels:

$$
\mathrm{B} \rightarrow \mathrm{~K} \mu^{+} \mu^{-}+\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}, \quad \mathrm{B} \rightarrow \mathrm{~K}^{*} \mu^{+} \mu^{-} \quad \text { and } \quad \mathrm{B}_{\mathrm{s}} \rightarrow \varphi \mu^{+} \mu^{-}
$$

BSM analysis

- A combined BSM analysis would be very CPU expensive (130 nuisance parameters!)
- Fit separately C_{9} and C_{10} for the three channels

- Flavor universality-testing ratios

$$
R_{K^{(*)}}=\frac{\mathcal{B}\left(B \rightarrow K^{(*)} \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B \rightarrow K^{(*)} e^{+} e^{-}\right)}
$$

are weakly sensitive to nonlocal contributions!

Summary \& Outlook

- We provide new SM predictions of $b \rightarrow$ see observables with
- Updated fit to the local form-factors;
- Controlled uncertainties on the non-local contributions.
- We performed a ($\mathbf{C}_{9}, \mathbf{C}_{10}$) BSM analysis, confirming the current trend.
- What is next?
- Perform an extended BSM analysis;
- Extend the prediction to higher \mathbf{q}^{2} values (including the $\psi(2 S)$)
- Include other channels $\Lambda_{b} \rightarrow \Lambda \mu \mu, \ldots$

Back-up

Putting everything together:

- The fit is performed in two steps...
- Preliminary fits:
- Local form factors:
- BSZ parametrization (8+19+19 parameters)
- LCSR + LQCD, more in the backup
- Non-local form factors:
- order 5 GvDV parametrization (12 + $36+36$ parameters)
-4 points at negative $q^{2}+B \rightarrow M J / \psi$ data
$\rightarrow 130$ nuisance parameters
- 'Proof of concept' fit to the WET's Wilson coefficients
- ... using EOS:

EOS is a software for a variety of applications in flavour physics. It is written in C++, but provides an interface to Python.
https://eos.github.io/

Fit to local form factors

Combined fit to LCSR and lattice:

- B $\rightarrow K$:
- HPQCD'17; FNAL/MILC'17
- Khodjamiriam and Rusov'17
- $B \rightarrow K^{*}$:
- Horgan, Liu, Meinel and Wingate'15
- Gubernari, Kokulu and van Dyk'18

$-\mathrm{B}_{\mathrm{s}} \rightarrow \varphi$:
- Horgan, Liu, Meinel and Wingate'15
- Gubernari, van Dyk and Virto'20

A few remarks

1. QCD Factorization [Beneke, Feldmann, Seidel, 2001 \& 2004]
2. Theory uncertainties due to charm-loops cancel in ratios observables \rightarrow "clean" observables Anomalies are not entirely due to charm-loops!
3. Agreement between "clean" and "not-so-clean" observables Charm-loops effects cannot be very large!
4. Naively set theory uncertainty to 0 in H_{λ} :
\rightarrow Significance of the C_{9} vs. C_{10} fit rises from $\sim 4 \sigma$ to $\sim 8 \sigma$!
This talk is not a waste of time...
5. Theory puzzles in $\mathbf{b} \boldsymbol{\rightarrow} \mathbf{s} \overline{\mathbf{c}} \mathbf{C}$ [see e.g. Lyon, Zwicky, 2014]

We need to be careful...

Data-driven (B)SM predictions

